
MetaVill
Smart Contract Security Audit

Prepared by ShellBoxes

August 5th, 2022 - September 23rd, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Metavill

Version 1.0

Classification Public

Scope

TheMetaVill Contract in theMetaVill Repository

Repo Commit Hash

https://gitlab.com/m6931/blockchain/
audit/

7046e7febb97321dd66d0515442d75b02842600e

Files MD5Hash

Airdrop.sol 32ea71311e8af72c31fca7bdd7a2a117

Creative.sol bf41d017dc5c81e30ec64c4f77cdf316

CreativeMarket.sol eece1d0de84459f909ae8ebf3d957767

Donate.sol a289c38cbdb778abe92e7d7a0c8f9e10

IDOPublic.sol 299c8e3a26711db4c2092a7a64b15696

IDOWhitelist.sol 4fb4dfdb42c533c5d92cb602e2f1b4a2

MVToken.sol 39237766fd1c9cb2577a1ccb7911342b

Private.sol 5d60ac63f1b2a4b1e9675506b413cf01

Seed.sol b27ed5e0c50a222de9d17ce43737c84d

VestingSchedule.sol eb1fcd940bc6e976d3ab65cf4dd798d5

2

https://gitlab.com/m6931/blockchain/audit/
https://gitlab.com/m6931/blockchain/audit/

Re-Audit Scope

Repo Commit Hash

https://gitlab.com/m6931/blockchain/
audit/

96765afed7a206751973a61487e5a6bb0dea4b05

Files MD5Hash

Airdrop.sol ac2fcb0848976013032f12d514ebe567

Creative.sol 72ae12f2abf4b97717cb04e2dedadddb

CreativeMarket.sol 880deb4c2160ef8ea7d87d759d58e13d

Donate.sol bb7a68aa9c95f353ffa1c50f8cc27667

IDOPublic.sol 4044bd34e62c3fa120b6f065e7213e59

IDOWhitelist.sol 41b14bf746f19dfcafab9499b7f75e53

MVToken.sol 39237766fd1c9cb2577a1ccb7911342b

Private.sol 7f1c3aaaace3dd285efaf51c45339661

Seed.sol a35475d8d248350751229c3665c3218d

VestingSchedule.sol 2a9ddbdc8178ff326b6e9ab0864591e9

Whitelist.sol b3e399a90b0c956c843732f1fadec6e0

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

3

https://gitlab.com/m6931/blockchain/audit/
https://gitlab.com/m6931/blockchain/audit/
mailto:contact@shellboxes.com

Contents
1 Introduction 7

1.1 AboutMetavill . 7

1.2 Approach&Methodology . 7

1.2.1 RiskMethodology . 8

2 FindingsOverview 9

2.1 Summary . 9

2.2 Key Findings . 9

3 FindingDetails 12

A CreativeMarket.sol . 12

A.1 The creative Contract Interface Cannot BeSet [HIGH] 12

A.2 TheOperator Is TheCenter Of EachBuy [HIGH] 13

A.3 Missing Transfer Verification [MEDIUM] 14

A.4 MissingAddress Verification [LOW] 15

A.5 Owner CanRenounceOwnership [LOW] 16

A.6 TheContract CanEndUpWithout Operators [LOW] 17

B IDOPublic.sol . 18

B.1 Buyer’s FundsCanBe Lost [HIGH] . 18

B.2 The end Variable IsNeverUsed [MEDIUM] 19

B.3 Missing Transfer Verification [MEDIUM] 20

B.4 Missing Value Verification [LOW] . 21

B.5 MissingAddress Verification [LOW] 23

B.6 The userCount Variable Does Not Represent The Number Of The

Users [LOW] . 24

C IDOWhitelist.sol . 25

C.1 Buyer’s FundsCanBeLost [HIGH] . 25

C.2 The end Variable IsNeverUsed [MEDIUM] 26

C.3 Missing Transfer Verification [MEDIUM] 27

C.4 Missing Value Verification [LOW] . 29

C.5 MissingAddress Verification [LOW] 30

D Donate.sol . 32

D.1 TheOwner CanControl All Transfer Parameters [CRITICAL] 32

4

D.2 Missing Transfer Verification [MEDIUM] 33

D.3 MissingAddress Verification [LOW] 34

D.4 Owner CanRenounceOwnership [LOW] 35

E Private.sol . 36

E.1 The Contract Is Not Verified ToHavemv Tokens [CRITICAL] 36

E.2 TheOwner CanWhitelist AnyAmount ToAnyUser [HIGH] 37

E.3 vestingPeriods Elements permil Should SumTo 1000 [MEDIUM] . . . 38

E.4 Missing Transfer Verification [MEDIUM] 39

E.5 MissingAddress Verification [LOW] 40

E.6 Owner CanRenounceOwnership [LOW] 41

E.7 Usage of block.timestamp [LOW] . 42

E.8 For LoopOverDynamic Array [LOW] 43

F Seed.sol . 45

F.1 The Contract Is Not Verified ToHavemv Tokens [CRITICAL] 45

F.2 TheOwner CanWhitelist AnyAmount ToAnyUser [HIGH] 46

F.3 vestingPeriods Elements permil Should SumTo 1000 [MEDIUM] . . . 47

F.4 MissingAddress Verification [LOW] 48

F.5 Owner CanRenounceOwnership [LOW] 49

F.6 Usage of block.timestamp [LOW] . 50

F.7 For LoopOverDynamic Array [LOW] 51

G Airdrop.sol . 53

G.1 TheOwner CanAirdropAnyAmount ToAnyUser [HIGH] 53

G.2 Missing Transfer Verification [MEDIUM] 54

G.3 MissingAddress Verification [LOW] 55

G.4 Owner CanRenounceOwnership [LOW] 56

H Creative.sol . 57

H.1 Owner CanRenounceOwnership [LOW] 57

H.2 TheContact CanEndUpWithout Operators [LOW] 58

I VestingSchedule.sol . 59

I.1 vestingPeriods Elements permil Should SumTo 1000 [MEDIUM] . . . 59

I.2 Owner CanRenounceOwnership [LOW] 60

I.3 Usage of block.timestamp [LOW] . 61

I.4 For LoopOverDynamic Array [LOW] 62

J MVToken.sol . 64

5

J.1 ApproveRaceCondition [LOW] . 64

4 Best Practices 65

BP.1 VariableNot Used . 65

BP.2 Minimize TheAmount Of Approvals . 65

BP.3 Unnecessary Initializations . 66

BP.4 ThemessageArgument IsNot Used . 67

BP.5 Public Function CanBeCalled External . 67

5 Tests 69

6 Static Analysis (Slither) 71

7 Conclusion 79

8 Disclaimer 80

6

1 Introduction
Metavill engaged ShellBoxes to conduct a security assessment on the MetaVill beginning

on August 5th, 2022 and ending September 23rd, 2022. In this report, we detail ourmethod-

ical approach to evaluate potential security issues associated with the implementation of

smart contracts, byexposingpossiblesemanticdiscrepanciesbetween thesmart contract

code and design document, and by recommending additional ideas to optimize the existing

code. Our findings indicate that thecurrentversionofsmartcontractscanstill beenhanced

further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 AboutMetavill

METAVILL is a Social Entertainment Defi Platform, which allows users to connect with

each other through broadcasting, creative NFTs, and earn from many activities:

Livestream to earn,Watch to earn, engage to earn... and free to play.

Issuer Metavill

Website https://metavill.io

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

7

https://metavill.io

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-

nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-

work is effective at conveying the features and consequences of technological vulnerabili-

ties.

Its quantitative paradigmenables repeatable and precisemeasurement,while also re-

vealing the underlying susceptibility characteristics that were used to calculate the Risk

scores. A risk levelwill be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-

ing the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-

spond to high,medium, and low, respectively. Severity is determinedbyprobability and im-

pact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

8

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions fromour analysis of theMetaVill implemen-

tation. During the firstpartofouraudit,weexamine thesmartcontractsourcecodeandrun

the codebase via a static code analyzer. The objective here is to find known coding prob-

lems statically and thenmanually check (reject or confirm) issues highlighted by the tool.

Additionally, we check business logics, system processes, and DeFi-related components

manually to identify potential hazards and/or defects.

2.2 Key Findings

In general, these smart contracts are well-designed and constructed, but their

implementation might be improved by addressing the discovered flaws, which include 3

critical-severity, 7 high-severity, 11medium-severity, 25 low-severity vulnerabilities.

Vulnerabilities Severity Status

D.1. TheOwner CanControl All Transfer Parameters CRITICAL Fixed

E.1. The Contract Is Not Verified ToHavemv Tokens CRITICAL Acknowledged

F.1. The Contract Is Not Verified ToHavemv Tokens CRITICAL Acknowledged

A.1. The creative Contract Interface Cannot BeSet HIGH Fixed

A.2. TheOperator Is TheCenter Of EachBuy HIGH Fixed

B.1. Buyer’s FundsCanBe Lost HIGH Fixed

C.1. Buyer’s FundsCanBeLost HIGH Fixed

E.2. TheOwnerCanWhitelist AnyAmount ToAnyUser HIGH Fixed

F.2. TheOwner CanWhitelist AnyAmount ToAnyUser HIGH Fixed

G.1. TheOwner CanAirdropAnyAmount ToAnyUser HIGH Acknowledged

A.3. Missing Transfer Verification MEDIUM Fixed

B.2. The end Variable IsNeverUsed MEDIUM Fixed

B.3. Missing Transfer Verification MEDIUM Fixed

C.2. The end Variable IsNeverUsed MEDIUM Fixed

9

C.3. Missing Transfer Verification MEDIUM Fixed

D.2. Missing Transfer Verification MEDIUM Fixed

E.3. vestingPeriods Elements permil Should Sum To

1000

MEDIUM Fixed

E.4. Missing Transfer Verification MEDIUM Fixed

F.3. vestingPeriods Elements permil Should Sum To

1000

MEDIUM Fixed

G.2. Missing Transfer Verification MEDIUM Fixed

I.1. vestingPeriods Elements permil Should Sum To

1000

MEDIUM Fixed

A.4. MissingAddress Verification LOW Fixed

A.5. Owner CanRenounceOwnership LOW Fixed

A.6. The Contract CanEndUpWithout Operators LOW Fixed

B.4. Missing Value Verification LOW Fixed

B.5. MissingAddress Verification LOW Fixed

B.6. The userCount Variable Does Not Represent The

NumberOf TheUsers

LOW Fixed

C.4. Missing Value Verification LOW Fixed

C.5. MissingAddress Verification LOW Fixed

D.3. MissingAddress Verification LOW Fixed

D.4. Owner CanRenounceOwnership LOW Fixed

E.5. MissingAddress Verification LOW Fixed

E.6. Owner CanRenounceOwnership LOW Fixed

E.7. Usage of block.timestamp LOW Acknowledged

E.8. For LoopOverDynamic Array LOW Fixed

F.4. MissingAddress Verification LOW Fixed

F.5. Owner CanRenounceOwnership LOW Fixed

F.6. Usage of block.timestamp LOW Acknowledged

F.7. For LoopOverDynamic Array LOW Fixed

G.3. MissingAddress Verification LOW Fixed

G.4. Owner CanRenounceOwnership LOW Fixed

10

H.1. Owner CanRenounceOwnership LOW Fixed

H.2. The Contact CanEndUpWithout Operators LOW Not Fixed

I.2. Owner CanRenounceOwnership LOW Fixed

I.3. Usage of block.timestamp LOW Acknowledged

I.4. For LoopOverDynamic Array LOW Fixed

11

3 FindingDetails

A CreativeMarket.sol

A.1 The creative Contract Interface Cannot BeSet [HIGH]

Description:

The creative is a variable that contains a contract interface,which is used to execute trans-

fer operations in the buy function. This variable is not initialized in the constructor, and it

does not have a setter. Therefore, it will never have a value different from the address(0),

this results in a denial of service in the buy function.

Code:

Listing 1: CreativeMarket.sol

9 ERC721 private creative;

Listing 2: CreativeMarket.sol

33 function buy(uint256 creativeId, address buyerAddress, address
,! ownerAddress, uint price, uint fee) public onlyOperator {

34 mv.transferFrom(buyerAddress, market, price + fee);
35 mv.transferFrom(market, ownerAddress, price);
36 creative.transferFrom(ownerAddress, buyerAddress, creativeId);

38 emit Bought(creativeId, ownerAddress, buyerAddress);
39 }

Risk Level:

Likelihood – 4

Impact - 5

12

Recommendation:

Consider initializing the creative variable in the constructor.

Status - Fixed

TheMetavill teamhas fixed the issue by initializing the creative variable in the constructor.

A.2 TheOperator Is TheCenter Of EachBuy [HIGH]

Description:

The operator is the one responsible for executing the buy function, the buyer and the owner

of theNFTdonothaveany interactionwith theCreativeMarket contract, theonlyaction they

performisapproving therequiredassets for thebuy function topass. Thisrepresentsasig-

nificant centralization riskwhere the operator is the center of all the buy operations and is

able tomanipulate all the parameters.

Code:

Listing 3: CreativeMarket.sol

33 function buy(uint256 creativeId, address buyerAddress, address
,! ownerAddress, uint price, uint fee) public onlyOperator {

34 mv.transferFrom(buyerAddress, market, price + fee);
35 mv.transferFrom(market, ownerAddress, price);
36 creative.transferFrom(ownerAddress, buyerAddress, creativeId);

38 emit Bought(creativeId, ownerAddress, buyerAddress);
39 }

Risk Level:

Likelihood – 4

Impact - 5

13

Recommendation:

Consider implementing a logic where the NFT holders would be able to create sell offers

and the buyerswould execute the buy function and fill the selected sell order.

Status - Fixed

TheMetavill teamhas fixed the issueby only allowing the operator to execute the buy func-

tion using a signature provided by the buyerAddress.

A.3 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 4: CreativeMarket.sol

33 function buy(uint256 creativeId, address buyerAddress, address
,! ownerAddress, uint price, uint fee) public onlyOperator {

34 mv.transferFrom(buyerAddress, market, price + fee);
35 mv.transferFrom(market, ownerAddress, price);
36 creative.transferFrom(ownerAddress, buyerAddress, creativeId);

38 emit Bought(creativeId, ownerAddress, buyerAddress);
39 }

14

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assent or require verifying that it returned true.

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

A.4 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contractmust ensure that themkand themvContractAddress

are different fromaddress(0).

Code:

Listing 5: CreativeMarket.sol

43 constructor(address mk, address mvContractAddress) {
44 market = mk;
45 mv = ERC20(mvContractAddress);
46 }

Risk Level:

Likelihood – 1

Impact - 3

15

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

A.5 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 6: CreativeMarket.sol

7 contract CreativeMarket is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address.

16

Additionally, if you decide to use a multi-signature wallet, then the execution of the

renounceOwnership will require for at least two or more users to be confirmed.

Alternatively, you can disable RenounceOwnership functionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

A.6 TheContract CanEndUpWithout Operators [LOW]

Description:

Thecontracthasarolenamedoperator,which is thegroupofaddressesallowed toexecute

the buy function. The _operators mapping is used to store the operators addresses. The

owner of the contract is able to call the setOperator and remove all the operators, which

will result in a denial of service.

Code:

Listing 7: CreativeMarket.sol

42 function setOperator(address operatorAddress, bool value) public
,! onlyOwner {

43 _operators[operatorAddress] = value;
44 emit OperatorSetted(operatorAddress, value);
45 }

Risk Level:

Likelihood – 1

Impact - 3

17

Recommendation:

Consideraddingasafety check in thesetOperator function thatwill prevent theowner from

removing all the operators from the contract.

Status - Fixed

TheMetavill teamhas fixed the issuebypreventing theowner frombeing removed fromthe

operators.

B IDOPublic.sol

B.1 Buyer’s FundsCanBe Lost [HIGH]

Description:

The buy function is used by the users to buymv tokens using BUSD, the users can claim the

boughtamountover thecourseofvestingperiods. Ifausercalls thebuywithanamount that

is lower than pricePerMv, the user will lose his fundswithout getting anymv tokens due to

a type conversion error.

Code:

Listing 8: IDOPublic.sol

59 function buy(uint amount) external {
60 require(amount >= minAllocation, 'Min exceed');
61 require(amount + totals[msg.sender] <= maxAllocation, 'Max exceed');
62 require(block.timestamp >= start, 'Before IDO');

64 busd.transferFrom(msg.sender, busdWalletAddress, amount);
65 totals[msg.sender] += amount / pricePerMv * 10 ** 18;
66 userCount += 1;
67 }

18

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Consider multiplying the amount by 10**18 before dividing it over the pricePerMv to avoid

rounding errors.

Status - Fixed

TheMetavill teamhas fixed the issue by performing themultiplication operation before the

division.

B.2 The end Variable IsNeverUsed [MEDIUM]

Description:

The contract contains a variable called end, thebuy function contains a checkover the start

variable, but it does not verify if the end has already passed.

Code:

Listing 9: IDOPublic.sol

16 uint private end;

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Consider implementingacheck inthebuyfunctionthatwillmakesurethatblock.timestamp

is between start and end.

19

Status - Fixed

TheMetavill teamhas fixed the issue by implementing the use of the end variable and veri-

fying it when calling the buy function.

B.3 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 10: IDOPublic.sol

59 function buy(uint amount) external {
60 require(amount >= minAllocation, 'Min exceed');
61 require(amount + totals[msg.sender] <= maxAllocation, 'Max exceed');
62 require(block.timestamp >= start, 'Before IDO');

64 busd.transferFrom(msg.sender, busdWalletAddress, amount);
65 totals[msg.sender] += amount / pricePerMv * 10 ** 18;
66 userCount += 1;
67 }

Listing 11: IDOPublic.sol

71 function claim() external {
72 require(totals[msg.sender] > 0, 'Not available');
73 uint amount = sumPermil() * totals[msg.sender] / 1000 - claimed[msg.

,! sender];
74 require(amount > 0, 'Not available to claimed');
75 claimed[msg.sender] += amount;

20

76 mv.transferFrom(mvWalletAddress, msg.sender, amount);
77 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

B.4 Missing Value Verification [LOW]

Description:

Certain functions lack a value safety check, the values of the arguments should be verified

to allow only the ones that complywith the contract’s logic. In the constructor function, the

contractmust ensure that pricePerMv_ is different from0, and the start_ variable is higher

thannowand lower thanend_, inaddition to that, theminAllocation_shouldbeverified tobe

higher thanmaxAllocation_.

Code:

Listing 12: IDOPublic.sol

23 constructor(
24 address busdAddress_,
25 address mvAddress_,
26 uint minAllocation_,

21

27 uint maxAllocation_,
28 uint start_,
29 uint end_,
30 uint pricePerMv_
31) {
32 busd = IERC20(busdAddress_);
33 mv = IERC20(mvAddress_);
34 busdWalletAddress = msg.sender;
35 mvWalletAddress = msg.sender;
36 minAllocation = minAllocation_;
37 maxAllocation = maxAllocation_;
38 start = start_;
39 end = end_;
40 pricePerMv = pricePerMv_;
41 userCount = 0;
42 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you verify the values provided in the arguments. The issue can be ad-

dressed by utilizing a require statement.

Status - Fixed

TheMetavill teamhas fixed the issue by verifying the values provided from the arguments.

22

B.5 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contract must ensure that the busdAddress_ and the mvAd-

dress_ are different fromaddress(0).

Code:

Listing 13: IDOPublic.sol

23 constructor(
24 address busdAddress_,
25 address mvAddress_,
26 uint minAllocation_,
27 uint maxAllocation_,
28 uint start_,
29 uint end_,
30 uint pricePerMv_
31) {
32 busd = IERC20(busdAddress_);
33 mv = IERC20(mvAddress_);
34 busdWalletAddress = msg.sender;
35 mvWalletAddress = msg.sender;
36 minAllocation = minAllocation_;
37 maxAllocation = maxAllocation_;
38 start = start_;
39 end = end_;
40 pricePerMv = pricePerMv_;
41 userCount = 0;
42 }

23

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

B.6 The userCount Variable DoesNot Represent The Number

Of TheUsers [LOW]

Description:

The userCount variable is initialized to zero, and it is incremented every time a user buys

anmv package. However, this variable does not represent its name as the buy function can

be called 2 times from the same user, therefore its value will not represent the number of

users.

Code:

Listing 14: IDOPublic.sol

59 function buy(uint amount) external {
60 require(amount >= minAllocation, 'Min exceed');
61 require(amount + totals[msg.sender] <= maxAllocation, 'Max exceed');
62 require(block.timestamp >= start, 'Before IDO');

64 busd.transferFrom(msg.sender, busdWalletAddress, amount);
65 totals[msg.sender] += amount / pricePerMv * 10 ** 18;

24

66 userCount += 1;
67 }

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider adding a mapping that will allow the contract to identify the users that have

already called the buy function, then only increment the userCount variable when the

msg.sender is calling the buy function for the first time.

Status - Fixed

The Metavill team has fixed the issue by only incrementing userCount variable when the

msg.sender is calling the buy function for the first time.

C IDOWhitelist.sol

C.1 Buyer’s FundsCanBeLost [HIGH]

Description:

The buy function is used by the users to buymv tokens using BUSD, the users can claim the

boughtamountover thecourseofvestingperiods. Ifausercalls thebuywithanamount that

is lower than pricePerMv, the user will lose his fundswithout getting anymv tokens due to

a type conversion error.

Code:

Listing 15: IDOWhitelist.sol

62 function buy(uint amount) external {

25

63 require(amount >= minAllocation, 'Min exceed');
64 require(amount + totals[msg.sender] <= maxAllows[msg.sender], 'Max

,! exceed');
65 require(block.timestamp >= start, 'Before IDO');

67 busd.transferFrom(msg.sender, busdWalletAddress, amount);
68 totals[msg.sender] += amount / pricePerMv * 10 ** 18;
69 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Consider multiplying the amount by 10**18 before dividing it over the pricePerMv to avoid

rounding errors.

Status - Fixed

TheMetavill teamhas fixed the issue by performing themultiplication operation before the

division.

C.2 The end Variable IsNeverUsed [MEDIUM]

Description:

The contract contains a variable called end, thebuy function contains a checkover the start

variable, but it does not verify if the end has already passed.

Code:

Listing 16: IDOWhitelist.sol

16 uint private end;

26

Risk Level:

Likelihood – 3

Impact - 3

Recommendation:

Consider implementingacheck inthebuyfunctionthatwillmakesurethatblock.timestamp

is between start and end.

Status - Fixed

TheMetavill teamhas fixed the issue by implementing the use of the end variable and veri-

fying it when calling the buy function.

C.3 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 17: IDOWhitelist.sol

62 function buy(uint amount) external {
63 require(amount >= minAllocation, 'Min exceed');
64 require(amount + totals[msg.sender] <= maxAllows[msg.sender], 'Max

,! exceed');
65 require(block.timestamp >= start, 'Before IDO');

67 busd.transferFrom(msg.sender, busdWalletAddress, amount);

27

68 totals[msg.sender] += amount / pricePerMv * 10 ** 18;
69 }

Listing 18: IDOWhitelist.sol

71 function claim() external {
72 require(totals[msg.sender] > 0, 'Not available');
73 uint amount = sumPermil() * totals[msg.sender] / 1000 - claimed[msg.

,! sender];
74 require(amount > 0, 'Not available to claimed');
75 claimed[msg.sender] += amount;
76 mv.transferFrom(mvWalletAddress, msg.sender, amount);
77 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

28

C.4 Missing Value Verification [LOW]

Description:

Certain functions lack a value safety check, the values of the arguments should be verified

to allow only the ones that complywith the contract’s logic. In the constructor function, the

contractmust ensure that pricePerMv_ is different from0, and the start_ variable is higher

thannowand lower thanend_, inaddition to that, theminAllocation_shouldbeverified tobe

higher thanmaxAllocation_.

Code:

Listing 19: IDOWhitelist.sol

24 constructor(
25 address busdAddress_,
26 address mvAddress_,
27 uint minAllocation_,
28 uint maxAllocation_,
29 uint start_,
30 uint end_,
31 uint pricePerMv_
32) {
33 busd = IERC20(busdAddress_);
34 mv = IERC20(mvAddress_);
35 busdWalletAddress = msg.sender;
36 mvWalletAddress = msg.sender;
37 minAllocation = minAllocation_;
38 maxAllocation = maxAllocation_;
39 start = start_;
40 end = end_;
41 pricePerMv = pricePerMv_;
42 whitelistCount = 0;
43 }

29

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you verify the values provided in the arguments. The issue can be ad-

dressed by utilizing a require statement.

Status - Fixed

TheMetavill teamhas fixed the issue by verifying the values provided from the arguments.

C.5 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contract must ensure that the busdAddress_ and the mvAd-

dress_ are different fromaddress(0).

Code:

Listing 20: IDOWhitelist.sol

24 constructor(
25 address busdAddress_,
26 address mvAddress_,
27 uint minAllocation_,
28 uint maxAllocation_,
29 uint start_,
30 uint end_,
31 uint pricePerMv_
32) {

30

33 busd = IERC20(busdAddress_);
34 mv = IERC20(mvAddress_);
35 busdWalletAddress = msg.sender;
36 mvWalletAddress = msg.sender;
37 minAllocation = minAllocation_;
38 maxAllocation = maxAllocation_;
39 start = start_;
40 end = end_;
41 pricePerMv = pricePerMv_;
42 whitelistCount = 0;
43 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

31

D Donate.sol

D.1 The Owner Can Control All Transfer

Parameters [CRITICAL]

Description:

Theowner is the one responsible for executing the donate function, andhe canalsomanip-

ulate all the transfers’ parameters with no restrictions. For instance, he can simply exe-

cute the donate function with zero as the receiveAmount, causing the receiverAddress to

receive the entire sendAmount. This represents a significant centralization riskwhere the

owner controls all aspects of the contract.

Code:

Listing 21: Donate.sol

20 function donate(address from, address to, uint sendAmount, uint
,! receiveAmount) external onlyOwner {

21 require(sendAmount > receiveAmount);
22 token.transferFrom(from, receiverAddress, sendAmount);
23 token.transferFrom(receiverAddress, to, receiveAmount);
24 }

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

Consider changing the logic of the contract to be more interactive with the users to avoid

centralization risks.

32

Status - Fixed

TheMetavill teamhas fixed the issuebyonlyallowing theowner toexecute thedonate func-

tion using a signature provided by the fromand that verifies the transfer parameters.

D.2 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 22: Donate.sol

20 function donate(address from, address to, uint sendAmount, uint
,! receiveAmount) external onlyOwner {

21 require(sendAmount > receiveAmount);
22 token.transferFrom(from, receiverAddress, sendAmount);
23 token.transferFrom(receiverAddress, to, receiveAmount);
24 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

33

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

D.3 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contract must ensure that the mvTokenAddress_ is different

fromaddress(0).

Code:

Listing 23: Donate.sol

11 constructor(address mvTokenAddress_) {
12 receiverAddress = msg.sender;
13 token = IERC20(mvTokenAddress_);
14 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

34

D.4 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 24: Donate.sol

6 contract Donate is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

35

E Private.sol

E.1 TheContract IsNotVerifiedToHavemvTokens [CRITICAL]

Description:

The owner is able to allow any amount to the users, this amount can be claimed by the user

using the claim function. However, when allowing an amount to a user, the owner does not

fund the contract with the allowed amount. As a result, the users may find themselves in

a situation where they are unable to collect their money from the contract due to a lack of

balance.

Code:

Listing 25: Private.sol

23 function addWhitelist(address user, uint amount) external onlyOwner {
24 totals[user] += amount;
25 }

Listing 26: Private.sol

39 function claim() external {
40 require(totals[msg.sender] > 0, 'Not in whitelist');
41 uint amount = claimable(msg.sender);
42 require(amount > 0, 'Amount is zero');
43 claimed[msg.sender] += amount;
44 mv.transfer(msg.sender, amount);
45 }

Risk Level:

Likelihood – 5

Impact - 5

36

Recommendation:

Considermaking itmandatory for the owner to fund the contractwith the amount ofmv to-

kens permitted by the addWhitelist function.

Status - Acknowledged

TheMetavill teamhas acknowledged the risk, stating the ownerwill fund the contract with

the sufficient funds.

E.2 TheOwnerCanWhitelist AnyAmount ToAnyUser [HIGH]

Description:

The addWhitelist function allows the owner to whitelist a user allowing him any amount of

mv tokens, this implementation cannot assure a good distribution of tokens over the users

as the owner can just whitelist one user with all the available amount. This represents a

significant centralization risk.

Code:

Listing 27: Private.sol

23 function addWhitelist(address user, uint amount) external onlyOwner {
24 totals[user] += amount;
25 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Consider constructing aMerkle tree that contains all thewhitelisted users, and storing the

Merkle root in the contract as a constant, then verify that the caller is whitelisted before

37

allowing him any amount. In addition to that, the users should be getting the same amount

to assure a fair distribution of tokens.

Status - Fixed

TheMetavill teamhas fixed the issue by removing the addWhitelist function.

E.3 vestingPeriods Elements permil Should Sum To

1000 [MEDIUM]

Description:

The vestingPeriods contains the vesting periods that will decide the amount that the user

will be able to claim in each period. However, the sumof the pemil attribute of all elements

should be equal to 1000 to assure that the userwill be able to get all of his funds by the end

of the vesting period.

Code:

Listing 28: Private.sol

13 Period[] private vestingPeriods;

Risk Level:

Likelihood – 3

Impact - 5

Recommendation:

Consider requiring the sumof the pemil attribute of all elements to be equal to 1000.

Status - Fixed

TheMetavill teamhas fixed the issue by requiring the sumof pemil to be equal to 1000.

38

E.4 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 29: Private.sol

39 function claim() external {
40 require(totals[msg.sender] > 0, 'Not in whitelist');
41 uint amount = claimable(msg.sender);
42 require(amount > 0, 'Amount is zero');
43 claimed[msg.sender] += amount;
44 mv.transfer(msg.sender, amount);
45 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

39

E.5 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contractmust ensure that the tokenAddress_ is different from

address(0).

Code:

Listing 30: Private.sol

19 constructor(address tokenAddress_) {
20 mv = IERC20(tokenAddress_);
21 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

40

E.6 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 31: Private.sol

6 contract Private is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

41

E.7 Usage of block.timestamp [LOW]

Description:

Block.timestamp is used in the contract. The variable block is a set of variables. The times-

tamp does not always reflect the current time andmay be inaccurate. The value of a block

can be influenced byminers. Maximal Extractable Value attacks require a timestamp of up

to 900seconds. There is noguarantee that the value is right, allwhat is guaranteed is that it

is higher than the timestampof the previous block.

Code:

Listing 32: Private.sol

47 function _precheckPeriod(uint permil) private view returns (bool) {
48 uint total = 0; //= init
49 for(uint i = 0; i < vestingPeriods.length; ++i) {
50 if (block.timestamp > vestingPeriods[i].timestamp) { //=

,! block.timestamp //= For loop
51 total += vestingPeriods[i].permil;
52 }
53 }
54 require(total + permil <= 1000, 'Above 1');
55 return true;
56 }

Listing 33: Private.sol

58 function claimable(address user) public view returns (uint) {
59 uint permil = 0; //= init
60 for(uint i = 0; i < vestingPeriods.length; ++i) {
61 if (block.timestamp > vestingPeriods[i].timestamp) { //=

,! block.timestamp //= For loop
62 permil += vestingPeriods[i].permil;
63 }
64 }
65 require(permil <= 1000, 'Above 1');

42

66 return totals[user] * permil / 1000 - claimed[user];
67 }
68 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Verify that a delay of 900 secondswill not harm the logic of the contract.

Status - Acknowledged

TheMetavill teamhasacknowledged therisk, stating thata900secondsdelaywillnotharm

the logic of the contract.

E.8 For LoopOverDynamic Array [LOW]

Description:

Whensmartcontractsaredeployedortheirassociatedfunctionsare invoked, theexecution

of these operations always consumes a certain quantity of gas, according to the amount of

computation required to accomplish them. Modifying an unknown-size array that grows

in size over time can result in a Denial of Service attack. Simply by having an excessively

huge array, users can exceed the gas limit, therefore preventing the transaction from ever

succeeding.

Code:

Listing 34: Private.sol

47 function _precheckPeriod(uint permil) private view returns (bool) {
48 uint total = 0;
49 for(uint i = 0; i < vestingPeriods.length; ++i) {

43

50 if (block.timestamp > vestingPeriods[i].timestamp) {
51 total += vestingPeriods[i].permil;
52 }
53 }
54 require(total + permil <= 1000, 'Above 1');
55 return true;
56 }

Listing 35: Private.sol

58 function claimable(address user) public view returns (uint) {
59 uint permil = 0;
60 for(uint i = 0; i < vestingPeriods.length; ++i) {
61 if (block.timestamp > vestingPeriods[i].timestamp) {
62 permil += vestingPeriods[i].permil;
63 }
64 }
65 require(permil <= 1000, 'Above 1');
66 return totals[user] * permil / 1000 - claimed[user];
67 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Avoid actions that involve looping across the entire data structure. If you really must loop

over an array of unknown size, arrange for it to consume many blocs and thus multiple

transactions.

Status - Fixed

TheMetavill team has fixed the issue by requiring the length of the vestingPeriods array to

be lower than 50.

44

F Seed.sol

F.1 TheContract IsNotVerifiedToHavemvTokens [CRITICAL]

Description:

The owner is able to allow any amount to the users, this amount can be claimed by the user

using the claim function. However, when allowing an amount to a user, the owner does not

fund the contract with the allowed amount. As a result, the users may find themselves in

a situation where they are unable to collect their money from the contract due to a lack of

balance.

Code:

Listing 36: Seed.sol

35 function addWhitelist(address user, uint amount) external onlyOwner {
36 totals[user] += amount;
37 }

Listing 37: Seed.sol

61 function claim() external {
62 require(totals[msg.sender] > 0, 'Not in whitelist');
63 uint amount = claimable(msg.sender);
64 require(amount > 0, 'Amount is zero');
65 claimed[msg.sender] += amount;
66 mv.transfer(msg.sender, amount);
67 }

Risk Level:

Likelihood – 5

Impact - 5

45

Recommendation:

Considermaking itmandatory for the owner to fund the contractwith the amount ofmv to-

kens permitted by the addWhitelist function.

Status - Acknowledged

TheMetavill teamhas acknowledged the risk, stating the ownerwill fund the contract with

the sufficient funds.

F.2 TheOwner CanWhitelist AnyAmount ToAnyUser [HIGH]

Description:

The addWhitelist function allows the owner to whitelist a user allowing him any amount of

mv tokens, this implementation cannot assure a good distribution of tokens over the users

as the owner can just whitelist one user with all the available amount. This represents a

significant centralization risk.

Code:

Listing 38: Seed.sol

35 function addWhitelist(address user, uint amount) external onlyOwner {
36 totals[user] += amount;
37 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Consider constructing aMerkle tree that contains all thewhitelisted users, and storing the

Merkle root in the contract as a constant, then verify that the user is whitelisted before al-

46

lowing him any amount. In addition to that, the users should be getting the same amount to

assure a fair distribution of tokens.

Status - Fixed

TheMetavill teamhas fixed the issue by removing the addWhitelist function.

F.3 vestingPeriods Elements permil Should Sum To

1000 [MEDIUM]

Description:

The vestingPeriods contains the vesting periods that will decide the amount that the user

will be able to claim in each period. However the sum of the pemil attribute of all elements

should be equal to 1000 to assure that the userwill be able to get all of his funds by the end

of the vesting period.

Code:

Listing 39: Seed.sol

13 Period[] private vestingPeriods;

Risk Level:

Likelihood – 3

Impact - 5

Recommendation:

Consider requiring the sumof the pemil attribute of all elements to be equal to 1000.

Status - Fixed

TheMetavill teamhas fixed the issue by requiring the sumof pemil to be equal to 1000.

47

F.4 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contractmust ensure that the tokenAddress_ is different from

address(0).

Code:

Listing 40: Seed.sol

19 constructor(address tokenAddress_) {
20 mv = IERC20(tokenAddress_);
21 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

48

F.5 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 41: Seed.sol

6 contract Seed is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

49

F.6 Usage of block.timestamp [LOW]

Description:

Block.timestamp is used in the contract. The variable block is a set of variables. The times-

tamp does not always reflect the current time andmay be inaccurate. The value of a block

can be influenced byminers. Maximal Extractable Value attacks require a timestamp of up

to 900seconds. There is noguarantee that the value is right, allwhat is guaranteed is that it

is higher than the timestampof the previous block.

Code:

Listing 42: Seed.sol

39 function _precheckPeriod(uint permil) private view returns (bool) {
40 uint total = 0;
41 for(uint i = 0; i < vestingPeriods.length; ++i) {
42 if (block.timestamp > vestingPeriods[i].timestamp) {
43 total += vestingPeriods[i].permil;
44 }
45 }
46 require(total + permil <= 1000, 'Above 1');
47 return true;
48 }

Listing 43: Seed.sol

50 function claimable(address user) public view returns (uint) {
51 uint permil = 0;
52 for(uint i = 0; i < vestingPeriods.length; ++i) {
53 if (block.timestamp > vestingPeriods[i].timestamp) {
54 permil += vestingPeriods[i].permil;
55 }
56 }
57 require(permil <= 1000, 'Above 1');
58 return totals[user] * permil / 1000 - claimed[user];
59 }

50

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Verify that a delay of 900 secondswill not harm the logic of the contract.

Status - Acknowledged

TheMetavill teamhasacknowledged therisk, stating thata900secondsdelaywillnotharm

the logic of the contract.

F.7 For LoopOverDynamic Array [LOW]

Description:

Whensmartcontractsaredeployedortheirassociatedfunctionsare invoked, theexecution

of these operations always consumes a certain quantity of gas, according to the amount of

computation required to accomplish them. Modifying an unknown-size array that grows

in size over time can result in a Denial of Service attack. Simply by having an excessively

huge array, users can exceed the gas limit, therefore preventing the transaction from ever

succeeding.

Code:

Listing 44: Seed.sol

39 function _precheckPeriod(uint permil) private view returns (bool) {
40 uint total = 0;
41 for(uint i = 0; i < vestingPeriods.length; ++i) {
42 if (block.timestamp > vestingPeriods[i].timestamp) {
43 total += vestingPeriods[i].permil;
44 }
45 }

51

46 require(total + permil <= 1000, 'Above 1');
47 return true;
48 }

Listing 45: Seed.sol

50 function claimable(address user) public view returns (uint) {
51 uint permil = 0;
52 for(uint i = 0; i < vestingPeriods.length; ++i) {
53 if (block.timestamp > vestingPeriods[i].timestamp) {
54 permil += vestingPeriods[i].permil;
55 }
56 }
57 require(permil <= 1000, 'Above 1');
58 return totals[user] * permil / 1000 - claimed[user];
59 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Avoid actions that involve looping across the entire data structure. If you really must loop

over an array of unknown size, arrange for it to consume many blocs and thus multiple

transactions.

Status - Fixed

TheMetavill team has fixed the issue by requiring the length of the vestingPeriods array to

be lower than 50.

52

G Airdrop.sol

G.1 TheOwner CanAirdropAnyAmount ToAnyUser [HIGH]

Description:

The airdrop function allows the owner to send a user any amount of mv tokens from the

mvWalletAddress, this implementation cannot insure a good distribution of tokens for the

users as the owner can just airdrop to one userwith all the available amount, and leave the

rest. This represents a significant centralization risk.

Code:

Listing 46: Airdrop.sol

18 function airdrop(address user, uint amount, string memory message)
,! external onlyOwner {

19 require(user != address(0));
20 mv.transferFrom(mvWalletAddress, user, amount);
21 }

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

Consider constructing aMerkle tree that contains all the userswho are eligible for the air-

drop, and storing theMerkle root in the contract as a constant, then ensure that the user is

eligible for the airdrop before sending himany amount. In addition to that, the users should

be getting the sameamount to assure a fair distribution of tokens.

53

Status -Acknowledged

The Metavill team has acknowledged the risk, stating that the users will get a random

amount of tokens to increase the unpredictability & curiosity properties. In addition to that,

the rewards in a period of time also depend on activities-point-collected,

anti-fraud-suspected-lv, and themarket (BTC price,MV price,MV TVL,...)

G.2 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

boolean. It is a good practice to check for the return status of the function call to ensure

that the transaction was executed successfully. It is the developer’s responsibility to

enclose these function calls with require() to ensure that, when the intended ERC20

function call returns false, the caller transaction also fails.

Code:

Listing 47: Airdrop.sol

18 function airdrop(address user, uint amount, string memory message)
,! external onlyOwner {

19 require(user != address(0));
20 mv.transferFrom(mvWalletAddress, user, amount);
21 }

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

Use the safeTransfer function from the safeERC20 Implementation, or put the transfer call

inside an assert or require verifying that it returned true.

54

Status - Fixed

The Metavill team has fixed the issue by using the safeTransferFrom function from the

safeERC20 implementation.

G.3 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type arguments should

include a zero-address test, otherwise, the contract’s functionality may become inacces-

sible. In the constructor, the contract must ensure that the mvTokenAddress_ is different

fromaddress(0).

Code:

Listing 48: Airdrop.sol

11 constructor(address mvTokenAddress_) {
12 mvWalletAddress = msg.sender;
13 mv = IERC20(mvTokenAddress_);
14 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that youmake sure the addresses provided in the arguments are different

from the address(0).

Status - Fixed

TheMetavill teamhas fixed the issuebyaddingrequirestatements toensure theaddresses

provided in the arguments are different from the address(0).

55

G.4 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 49: Airdrop.sol

6 contract Airdrop is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

56

H Creative.sol

H.1 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 50: Creative.sol

6 contract Creative is ERC721, Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

57

H.2 TheContact CanEndUpWithout Operators [LOW]

Description:

Thecontracthasarolenamedoperator,which is thegroupofaddressesallowed toexecute

the buy function. The _operators mapping is used to store the operators addresses. The

owner of the contract is able to call the setOperator and remove all the operators, which

will result in a denial of service.

Code:

Listing 51: Creative.sol

23 function setOperator(address operatorAddress, bool value) public
,! onlyOwner {

24 _operators[operatorAddress] = value;
25 emit OperatorSetted(operatorAddress, value);
26 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Consideraddingasafety check in thesetOperator function thatwill prevent theowner from

removing all the operators from the contract.

58

Status -Not Fixed

I VestingSchedule.sol

I.1 vestingPeriods Elements permil Should Sum To

1000 [MEDIUM]

Description:

The vestingPeriods contains the vesting periods that will decide the amount that the user

will be able to claim in each period. However, the sumof the pemil attribute of all elements

should be equal to 1000 to assure that the userwill be able to get all of his funds by the end

of the vesting period.

Code:

Listing 52: VestingSchedule.sol

11 Period[] private vestingPeriods;

Risk Level:

Likelihood – 3

Impact - 5

Recommendation:

Consider requiring the sumof the pemil attribute of all elements to be equal to 1000.

Status - Fixed

TheMetavill teamhas fixed the issue by requiring the sumof pemil to be equal to 1000.

59

I.2 Owner CanRenounceOwnership [LOW]

Description:

Typically, the account that deploys the contract is also its owner. Consequently, the owner

is able to engage in certain privileged activities in his own name. In smart contracts, the

renounceOwnership function is used to renounce ownership, whichmeans that if the con-

tract’s ownership has never been transferred, it will never have anOwner, rendering some

owner-exclusive functionality unavailable.

Code:

Listing 53: VestingSchedule.sol

6 contract VestingSchedule is Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

We recommend that you prevent the owner from calling renounceOwnership without first

transferring ownership to a different address. Additionally, if you decide to use a multi-

signaturewallet, then the execution of the renounceOwnershipwill require for at least two

or more users to be confirmed. Alternatively, you can disable Renounce Ownership func-

tionality by overriding it.

Status - Fixed

TheMetavill teamhas fixed the issuebyoverriding the renounceownership functionality in

order to disable it.

60

I.3 Usage of block.timestamp [LOW]

Description:

Block.timestamp is used in the contract. The variable block is a set of variables. The times-

tamp does not always reflect the current time andmay be inaccurate. The value of a block

can be influenced byminers. Maximal Extractable Value attacks require a timestamp of up

to 900seconds. There is noguarantee that the value is right, allwhat is guaranteed is that it

is higher than the timestampof the previous block.

Code:

Listing 54: VestingSchedule.sol

25 function _precheckPeriod(uint permil) private view returns (bool) {
26 uint total = 0;
27 for(uint i = 0; i < vestingPeriods.length; ++i) {
28 if (block.timestamp > vestingPeriods[i].timestamp) {
29 total += vestingPeriods[i].permil;
30 }
31 }
32 require(total + permil <= 1000, 'Above 1');
33 return true;
34 }

Listing 55: VestingSchedule.sol

36 function sumPermil() internal view returns (uint) {
37 uint permil = 0;
38 for(uint i = 0; i < vestingPeriods.length; ++i) {
39 if (block.timestamp > vestingPeriods[i].timestamp) {
40 permil += vestingPeriods[i].permil;
41 }
42 }
43 return permil >= 1000 ? 1000 : permil;
44 }
45 }

61

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Verify that a delay of 900 secondswill not harm the logic of the contract.

Status - Acknowledged

TheMetavill teamhasacknowledged therisk, stating thata900secondsdelaywillnotharm

the logic of the contract.

I.4 For LoopOverDynamic Array [LOW]

Description:

Whensmartcontractsaredeployedortheirassociatedfunctionsare invoked, theexecution

of these operations always consumes a certain quantity of gas, according to the amount of

computation required to accomplish them. Modifying an unknown-size array that grows

in size over time can result in a Denial of Service attack. Simply by having an excessively

huge array, users can exceed the gas limit, therefore preventing the transaction from ever

succeeding.

Code:

Listing 56: VestingSchedule.sol

25 function _precheckPeriod(uint permil) private view returns (bool) {
26 uint total = 0;
27 for(uint i = 0; i < vestingPeriods.length; ++i) {
28 if (block.timestamp > vestingPeriods[i].timestamp) {
29 total += vestingPeriods[i].permil;
30 }
31 }

62

32 require(total + permil <= 1000, 'Above 1');
33 return true;
34 }

Listing 57: VestingSchedule.sol

36 function sumPermil() internal view returns (uint) {
37 uint permil = 0;
38 for(uint i = 0; i < vestingPeriods.length; ++i) {
39 if (block.timestamp > vestingPeriods[i].timestamp) {
40 permil += vestingPeriods[i].permil;
41 }
42 }
43 return permil >= 1000 ? 1000 : permil;
44 }
45 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

Avoid actions that involve looping across the entire data structure. If you really must loop

over an array of unknown size, arrange for it to consume many blocs and thus multiple

transactions.

Status - Fixed

TheMetavill team has fixed the issue by requiring the length of the vestingPeriods array to

be lower than 50.

63

J MVToken.sol

J.1 ApproveRaceCondition [LOW]

Description:

The standard ERC20 implementation contains a widely known racing condition in its

approve function,wherein a spender canwitness the token owner broadcast a transaction

altering their approval and quickly sign and broadcast a transaction using transferFrom to

move the current approved amount from the owner’s balance to the spender. If the

spender’s transaction is validated before the owner’s, the spender will be able to get both

approval amounts of both transactions.

Code:

Listing 58: MVToken.sol

5 contract MVToken is ERC20 {

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

We recommend using increaseAllowance and decreaseAllowance functions tomodify the

approval amount instead of using the approve function tomodify it.

Status - Acknowledged

TheMetavill teamhasacknowledged the risk, stating that theydonotuse theapprove func-

tion.

64

4 Best Practices

BP.1 VariableNot Used

Description:

Avariable isdeclaredandcalledbusd, this variable isnot used inanyof thecontract’s func-

tions. It is recommended to remove the variables that are not used in the logic of the con-

tact.

Code:

Listing 59: CreativeMarket.sol

10 ERC20 private busd;

BP.2 Minimize TheAmount Of Approvals

Description:

The buy function requires the buyerAddress to approve price + fee, and the market to ap-

prove price to the contract. The market approval can be removed using the following im-

plementation:

Code:

Listing 60: CreativeMarket.sol

33 function buy(uint256 creativeId, address buyerAddress, address
,! ownerAddress, uint price, uint fee) public onlyOperator {

34 mv.transferFrom(buyerAddress, market, fee);
35 mv.transferFrom(buyerAddress, ownerAddress, price);
36 creative.transferFrom(ownerAddress, buyerAddress, creativeId);
37

38 emit Bought(creativeId, ownerAddress, buyerAddress);
39 }

65

BP.3 Unnecessary Initializations

Description:

When a variable is declared in solidity, it gets initialized with its type’s default value. Thus,

there is no need to initialize a variablewith the default value.

Code:

Listing 61: IDOPublic.sol

41 userCount = 0;

Listing 62: IDOWhitelist.sol

42 whitelistCount = 0;

Listing 63: Private.sol

48 uint total = 0

Listing 64: Private.sol

59 uint permil = 0;

Listing 65: Seed.sol

40 uint total = 0

Listing 66: Seed.sol

51 uint permil = 0;

66

BP.4 ThemessageArgument IsNot Used

Description:

Theairdrop functioncontainsanargument that isnotused, calledmessage. Asabestprac-

tice, it is recommended to remove the arguments that are not used inside the function.

Code:

Listing 67: IDOPublic.sol

18 function airdrop(address user, uint amount, string memory message)
,! external onlyOwner {

19 require(user != address(0));
20 mv.transferFrom(mvWalletAddress, user, amount);
21 }

BP.5 Public Function CanBeCalled External

Description:

Functionswith a public scope that are not called inside the contract should be declared ex-

ternal to reduce the gas fees.

Code:

Listing 68: Creative.sol

19 function mint(address to, uint256 id) public onlyOperator {
20 _safeMint(to, id);
21 }

Listing 69: Creative.sol

23 function setOperator(address operatorAddress, bool value) public
,! onlyOwner {

24 _operators[operatorAddress] = value;

67

25 emit OperatorSetted(operatorAddress, value);
26 }

Listing 70: CreativeMarket.sol

33 function buy(uint256 creativeId, address buyerAddress, address
,! ownerAddress, uint price, uint fee) public onlyOperator {

34 mv.transferFrom(buyerAddress, market, price + fee);
35 mv.transferFrom(market, ownerAddress, price);
36 creative.transferFrom(ownerAddress, buyerAddress, creativeId);
37

38 emit Bought(creativeId, ownerAddress, buyerAddress);
39 }

Listing 71: CreativeMarket.sol

42 function setOperator(address operatorAddress, bool value) public
,! onlyOwner {

43 _operators[operatorAddress] = value;
44 emit OperatorSetted(operatorAddress, value);
45 }

68

5 Tests
Results:

IDO Public
[
[
BigNumber { value: "1" },
BigNumber { value: "10" },
timestamp: BigNumber { value: "1" },
permil: BigNumber { value: "10" }

]
]�

Add (71ms)

MV Token
1) Total supply�
Transfer (612ms)

Schedule
[
[
BigNumber { value: "1" },
BigNumber { value: "10" },
timestamp: BigNumber { value: "1" },
permil: BigNumber { value: "10" }

]
]�

Add (47ms)

Seed
BigNumber { value: "0" }
BigNumber { value: "1000" }

2) Show success

69

3 passing (7s)
2 failing

1) MV Token
Total supply:

AssertionError: expected '1000000000000000000000000000' to equal
,! '6000000000000000000000000000'

+ expected - actual

-1000000000000000000000000000
+6000000000000000000000000000

at Context.<anonymous> (test/MV-test.js:25:67)
2) Seed

Show success:
Error: VM Exception while processing transaction: reverted with

,! reason string 'Amount is zero'
at Seed.claim (contracts/Seed.sol:64)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/

,! internal/hardhat-network/provider/node.ts:1772:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-

,! network/provider/node.ts:466:16)
at EthModule._sendTransactionAndReturnHash (node_modules/hardhat/src

,! /internal/hardhat-network/provider/modules/eth.ts:1496:18)
at HardhatNetworkProvider.request (node_modules/hardhat/src/internal

,! /hardhat-network/provider/provider.ts:118:18)
at EthersProviderWrapper.send (node_modules/@nomiclabs/hardhat-

,! ethers/src/internal/ethers-provider-wrapper.ts:13:20)

Conclusion:

We recommend fixing the errors encountered during the tests, also, consider addingmore

testing scenarios in order to guarantee the functionality of the contracts.

70

6 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated test-

ingmethodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

usedto testmathematical relationshipsbetweenSolidity instancesstaticallyandvariables

thatallowfor thedetectionoferrorsor inconsistentusageof thecontracts’APIs throughout

the entire codebase.

Results:

Airdrop.airdrop(address,uint256,string) (contracts/Airdrop.sol#18-21)
,! ignores return value by mv.transferFrom(mvWalletAddress,user,
,! amount) (contracts/Airdrop.sol#20)

Different versions of Solidity are used:
- Version used: ['0.8.4', '^0.8.0']
- 0.8.4 (contracts/MVToken.sol#2)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/ERC20.

,! sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20

,! .sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/

,! extensions/IERC20Metadata.sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol

,! #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
,! sol#21-23) is never used and should be removed

ERC20._burn(address,uint256) (node_modules/@openzeppelin/contracts/token
,! /ERC20/ERC20.sol#280-295) is never used and should be removed

71

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! ERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! IERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! extensions/IERC20Metadata.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #incorrect-versions-of-solidity

name() should be declared external:
- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/

,! ERC20.sol#62-64)
symbol() should be declared external:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/
,! ERC20/ERC20.sol#70-72)

decimals() should be declared external:
- ERC20.decimals() (node_modules/@openzeppelin/contracts/token/

,! ERC20/ERC20.sol#87-89)
totalSupply() should be declared external:

- ERC20.totalSupply() (node_modules/@openzeppelin/contracts/token
,! /ERC20/ERC20.sol#94-96)

balanceOf(address) should be declared external:
- ERC20.balanceOf(address) (node_modules/@openzeppelin/contracts/

,! token/ERC20/ERC20.sol#101-103)
transfer(address,uint256) should be declared external:

- ERC20.transfer(address,uint256) (node_modules/@openzeppelin/
,! contracts/token/ERC20/ERC20.sol#113-117)

approve(address,uint256) should be declared external:

72

- ERC20.approve(address,uint256) (node_modules/@openzeppelin/
,! contracts/token/ERC20/ERC20.sol#136-140)

transferFrom(address,address,uint256) should be declared external:
- ERC20.transferFrom(address,address,uint256) (node_modules/

,! @openzeppelin/contracts/token/ERC20/ERC20.sol#158-167)
increaseAllowance(address,uint256) should be declared external:

- ERC20.increaseAllowance(address,uint256) (node_modules/
,! @openzeppelin/contracts/token/ERC20/ERC20.sol#181-185)

decreaseAllowance(address,uint256) should be declared external:
- ERC20.decreaseAllowance(address,uint256) (node_modules/

,! @openzeppelin/contracts/token/ERC20/ERC20.sol#201-210)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #public-function-that-could-be-declared-external
contracts/MVToken.sol analyzed (5 contracts with 78 detectors), 17

,! result(s) found

Private.claim() (contracts/Private.sol#39-45) ignores return value by mv
,! .transfer(msg.sender,amount) (contracts/Private.sol#44)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #unchecked-transfer

Private._precheckPeriod(uint256) (contracts/Private.sol#47-56) uses
,! timestamp for comparisons

Dangerous comparisons:
- block.timestamp > vestingPeriods[i].timestamp (contracts/

,! Private.sol#50)
Private.claimable(address) (contracts/Private.sol#58-67) uses timestamp

,! for comparisons
Dangerous comparisons:
- block.timestamp > vestingPeriods[i].timestamp (contracts/

,! Private.sol#61)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #block-timestamp

73

Different versions of Solidity are used:
- Version used: ['0.8.4', '^0.8.0']
- 0.8.4 (contracts/Private.sol#2)
- ^0.8.0 (node_modules/@openzeppelin/contracts/access/Ownable.sol

,! #4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20

,! .sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol

,! #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
,! sol#21-23) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/access/
,! Ownable.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! IERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #incorrect-versions-of-solidity

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (node_modules/@openzeppelin/

,! contracts/access/Ownable.sol#61-63)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (node_modules/@openzeppelin/
,! contracts/access/Ownable.sol#69-72)

74

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #public-function-that-could-be-declared-external

contracts/Private.sol analyzed (4 contracts with 78 detectors), 10
,! result(s) found

Seed.claim() (contracts/Seed.sol#61-67) ignores return value by mv.
,! transfer(msg.sender,amount) (contracts/Seed.sol#66)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #unchecked-transfer

Seed._precheckPeriod(uint256) (contracts/Seed.sol#39-48) uses timestamp
,! for comparisons

Dangerous comparisons:
- block.timestamp > vestingPeriods[i].timestamp (contracts/Seed.

,! sol#42)
Seed.claimable(address) (contracts/Seed.sol#50-59) uses timestamp for

,! comparisons
Dangerous comparisons:
- block.timestamp > vestingPeriods[i].timestamp (contracts/Seed.

,! sol#53)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #block-timestamp

Different versions of Solidity are used:
- Version used: ['0.8.4', '^0.8.0']
- 0.8.4 (contracts/Seed.sol#2)
- ^0.8.0 (node_modules/@openzeppelin/contracts/access/Ownable.sol

,! #4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/IERC20

,! .sol#4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol

,! #4)

75

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
,! sol#21-23) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/access/
,! Ownable.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/token/ERC20/
,! IERC20.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #incorrect-versions-of-solidity

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (node_modules/@openzeppelin/

,! contracts/access/Ownable.sol#61-63)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (node_modules/@openzeppelin/
,! contracts/access/Ownable.sol#69-72)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #public-function-that-could-be-declared-external

contracts/Seed.sol analyzed (4 contracts with 78 detectors), 10 result(s
,!) found

VestingSchedule._precheckPeriod(uint256) (contracts/VestingSchedule.sol
,! #25-34) uses timestamp for comparisons

Dangerous comparisons:

76

- block.timestamp > vestingPeriods[i].timestamp (contracts/
,! VestingSchedule.sol#28)

VestingSchedule.sumPermil() (contracts/VestingSchedule.sol#36-44) uses
,! timestamp for comparisons

Dangerous comparisons:
- block.timestamp > vestingPeriods[i].timestamp (contracts/

,! VestingSchedule.sol#39)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #block-timestamp

Different versions of Solidity are used:
- Version used: ['0.8.4', '^0.8.0']
- 0.8.4 (contracts/VestingSchedule.sol#2)
- ^0.8.0 (node_modules/@openzeppelin/contracts/access/Ownable.sol

,! #4)
- ^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol

,! #4)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation

,! #different-pragma-directives-are-used

Context._msgData() (node_modules/@openzeppelin/contracts/utils/Context.
,! sol#21-23) is never used and should be removed

VestingSchedule.sumPermil() (contracts/VestingSchedule.sol#36-44) is
,! never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #dead-code

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/access/
,! Ownable.sol#4) allows old versions

Pragma version^0.8.0 (node_modules/@openzeppelin/contracts/utils/Context
,! .sol#4) allows old versions

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #incorrect-versions-of-solidity

77

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (node_modules/@openzeppelin/

,! contracts/access/Ownable.sol#61-63)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (node_modules/@openzeppelin/
,! contracts/access/Ownable.sol#69-72)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation
,! #public-function-that-could-be-declared-external

contracts/VestingSchedule.sol analyzed (3 contracts with 78 detectors),
,! 9 result(s) found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

78

7 Conclusion
In this audit, we examined the design and implementation of MetaVill contract and discov-

eredseveral issuesof varyingseverity. Metavill teamaddressed39 issues raised in the ini-

tial report and implemented the necessary fixes, while classifying the rest as a risk with

low-probability of occurrence. Shellboxes’ auditors advised Metavill Team to maintain a

high level of vigilance and to keep those findings in mind in order to avoid any future com-

plications.

79

8 Disclaimer

Shellboxes reports shouldnot beconstruedas ”endorsements” or ”disapprovals” of partic-

ular teamsorprojects. These reportsdonot reflect theeconomicsor valueof any ”product”

or ”asset” producedbyany teamorproject that engagesShellboxes todoasecurityevalua-

tion, nor should they be regarded as such. ShellboxesReports do not provide anywarranty

or guarantee regarding the absolute bug-free nature of the examined technology, nor do

theyprovideany indicationof the technology’sproprietors, businessmodel, businessor le-

gal compliance. ShellboxesReports should not be used in anyway to decidewhether to in-

vest inor takepart inacertainproject. These reportsdon’t offeranykindof investingadvice

and shouldn’t be used that way. Shellboxes Reports are the result of a thorough auditing

process designed to assist our clients in improving the quality of their codewhile lowering

the significant risk posed by blockchain technology. According to Shellboxes, each busi-

ness and person is in charge of their own due diligence and ongoing security. Shellboxes

doesnot guarantee thesecurity or functionality of the technologyweagree to research; in-

stead, our purpose is to assist in limiting theattack vectors and thehighdegreeof variation

associatedwith using newand evolving technologies.

80

For a Contract Audit, contact us at contact@shellboxes.com

81

mailto:contact@shellboxes.com

	Introduction
	About Metavill
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	CreativeMarket.sol
	The creative Contract Interface Cannot Be Set [HIGH]
	The Operator Is The Center Of Each Buy [HIGH]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]
	The Contract Can End Up Without Operators [LOW]

	IDOPublic.sol
	Buyer's Funds Can Be Lost [HIGH]
	The end Variable Is Never Used [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Missing Value Verification [LOW]
	Missing Address Verification [LOW]
	The userCount Variable Does Not Represent The Number Of The Users [LOW]

	IDOWhitelist.sol
	Buyer's Funds Can Be Lost [HIGH]
	The end Variable Is Never Used [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Missing Value Verification [LOW]
	Missing Address Verification [LOW]

	Donate.sol
	The Owner Can Control All Transfer Parameters [CRITICAL]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]

	Private.sol
	The Contract Is Not Verified To Have mv Tokens [CRITICAL]
	The Owner Can Whitelist Any Amount To Any User [HIGH]
	vestingPeriods Elements permil Should Sum To 1000 [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]
	Usage of block.timestamp [LOW]
	For Loop Over Dynamic Array [LOW]

	Seed.sol
	The Contract Is Not Verified To Have mv Tokens [CRITICAL]
	The Owner Can Whitelist Any Amount To Any User [HIGH]
	vestingPeriods Elements permil Should Sum To 1000 [MEDIUM]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]
	Usage of block.timestamp [LOW]
	For Loop Over Dynamic Array [LOW]

	Airdrop.sol
	The Owner Can Airdrop Any Amount To Any User [HIGH]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Owner Can Renounce Ownership [LOW]

	Creative.sol
	Owner Can Renounce Ownership [LOW]
	The Contact Can End Up Without Operators [LOW]

	VestingSchedule.sol
	vestingPeriods Elements permil Should Sum To 1000 [MEDIUM]
	Owner Can Renounce Ownership [LOW]
	Usage of block.timestamp [LOW]
	For Loop Over Dynamic Array [LOW]

	MVToken.sol
	Approve Race Condition [LOW]

	Best Practices
	Variable Not Used
	Minimize The Amount Of Approvals
	Unnecessary Initializations
	The message Argument Is Not Used
	Public Function Can Be Called External

	Tests
	Static Analysis (Slither)
	Conclusion
	Disclaimer

