
PXPGateway
Smart Contract Security Audit

Prepared by ShellBoxes

May 4th, 2022 - June 15th, 2022

Shellboxes.com

contact@shellboxes.com

https://shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client PXPGateway

Version 1.0

Classification Public

Scope

ThePXPGateway Contract in the PXPGateway Repository

Files MD5Hash

PXPGateWay.sol 3691308F2A4C2F6983F2880D32E29C84

PXPToken.sol 8FCD4C929A5CCE5274D661185D11D43B

signController.go 8FCD4C929A5CCE5274D661185D11D43B

router.go E68D1EA95D3D55F61C5A704CB7E63551

Contacts

COMPANY EMAIL

ShellBoxes contact@shellboxes.com

2

mailto:contact@shellboxes.com

Contents
1 Introduction 5

1.1 About PXP . 5

1.2 Approach&Methodology . 5

1.2.1 RiskMethodology . 6

2 FindingsOverview 7

2.1 Summary . 7

2.2 Key Findings . 7

3 FindingDetails 9

A signController.go . 9

A.1 Missing amount check in signWithdraw [CRITICAL] 9

A.2 InfiniteWithdrawLeads To TheDrain Of TheContract [CRITICAL] . . 10

A.3 AMaliciousUser Can TamperAddresses [HIGH] 12

B routes.go . 13

B.1 API Exposed To ThePublic [CRITICAL] 13

B.2 MissingMiddleware For An Inactive User [MEDIUM] 14

C Authorizeservice.go . 15

C.1 Wallet Authentication VerifedBy ThePrivate Key [HIGH] 15

C.2 Public Key CanBe Tampered [HIGH] 17

C.3 jwtSecret Is Hardcoded In TheAuthorizeservice [MEDIUM] 18

C.4 HS256UsedAsSigningAlgorithm [LOW] 19

C.5 Add ThePublic Address In The JWT Token [INFORMATIONAL] 20

D Authservice.go . 21

D.1 getSecretKeyReturnsPredictedOutput [LOW] 21

E PXPGateWay.sol . 22

E.1 withdrawTokenCanBeAbused [HIGH] 22

E.2 Overriding Completed Transactions [MEDIUM] 24

E.3 Missing Transfer Verification [MEDIUM] 25

E.4 MissingAddress Verification [LOW] 27

E.5 Missing Value Verification [LOW] . 28

E.6 Floating Pragma [LOW] . 29

F PXPToken.sol . 30

3

F.1 ApproveRaceCondition [LOW] . 30

F.2 Owner CanRenounceOwnership [LOW] 31

F.3 Floating Pragma [LOW] . 32

4 Best Practices 33

BP.1 Variables should be initialized first . 33

5 Static Analysis (Slither) 34

6 Conclusion 55

4

1 Introduction
PXPengagedShellBoxes to conduct a security assessment on thePXPGateway beginning

on May 4th, 2022 and ending June 15th, 2022. In this report, we detail our methodical

approach to evaluate potential security issues associated with the implementation of

smart contracts, by exposing possible semantic discrepancies between the smart

contract code anddesign document, and by recommending additional ideas to optimize the

existing code. Our findings indicate that the current version of smart contracts can still be

enhanced further due to the presence ofmany security and performance concerns.

This document summarizes the findings of our audit.

1.1 About PXP

Pirate X Pirate is a blockchain-based NFT adventure gamewith a turn-based dice combat

system. It is built to be a sustainable platform with long-term updates planned. Pirate X

Pirate is a world where you are rewarded with in-gamemoney by adventuring across the

high seas. Recruit your crew, form your fleet, then harvest resources or test your skills

fighting against other pirates to earn.

Issuer PXP

Website https://piratexpirate.io

Type Solidity Smart Contract

AuditMethod Whitebox

1.2 Approach&Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a

balance between efficiency, timeliness, practicability, and correctness within the audit’s

scope. While manual testing is advised for identifying problems in logic, procedure, and

implementation, automated testing techniques help to expand the coverage of smart

contracts and can quickly detect code that does not complywith security best practices.

5

1.2.1 RiskMethodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment

technique that considers both the LIKELIHOOD and IMPACT of a security incident. This

framework is effective at conveying the features and consequences of technological

vulnerabilities.

Its quantitative paradigm enables repeatable and precise measurement, while also

revealing the underlying susceptibility characteristics thatwere used to calculate theRisk

scores. A risk level will be assigned to each vulnerability on a scale of 5 to 1, with 5

indicating the greatest possibility or impact.

� Likelihood quantifies the probability of a certain vulnerability being discovered and

exploited in the untamed.

� Impact quantifies the technical and economic costs of a successful attack.

� Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which

correspond to high, medium, and low, respectively. Severity is determined by probability

and impact and is categorized into four levels, namely Critical, High,Medium, and Low.

Im
pa

ct High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

6

2 FindingsOverview
2.1 Summary

The following is a synopsis of our conclusions from our analysis of the PXP

Gateway implementation. During the first part of our audit, we examine the smart contract

source code and run the codebase via a static code analyzer. The objective here is to find

known coding problems statically and then manually check (reject or confirm) issues

highlighted by the tool. Additionally, we check business logics, system processes, and

DeFi-related componentsmanually to identify potential hazards and/or defects.

2.2 Key Findings

In general,, these smart contracts are well-designed and constructed,, but their

implementation might be improved by addressing the discovered flaws, which include 3

critical-severity, 4 high-severity, 4 medium-severity, 8 low-severity, 1

informational-severity vulnerabilities.

Vulnerabilities Severity Status

Missing amount check in signWithdraw CRITICAL Fixed

InfiniteWithdrawLeads To TheDrain Of TheContract CRITICAL Fixed

API Exposed To ThePublic CRITICAL Fixed

AMaliciousUser Can TamperAddresses HIGH Fixed

Wallet Authentication VerifedBy ThePrivate Key HIGH Fixed

Public Key CanBe Tampered HIGH Fixed

withdrawTokenCanBeAbused HIGH Acknowledged

MissingMiddleware For An Inactive User MEDIUM Fixed

jwtSecret Is Hardcoded In TheAuthorizeservice MEDIUM Fixed

Overriding Completed Transactions MEDIUM Mitigated

Missing Transfer Verification MEDIUM Fixed

HS256UsedAsSigningAlgorithm LOW Acknowledged

getSecretKeyReturnsPredictedOutput LOW Fixed

MissingAddress Verification LOW Fixed

7

Missing Value Verification LOW Fixed

Floating Pragma LOW Fixed

ApproveRaceCondition LOW Akcnowledged

Owner CanRenounceOwnership LOW Acknowledged

Floating Pragma LOW Acknowledged

Add ThePublic Address In The JWT Token INFORMATIONAL Acknowledged

8

3 FindingDetails

A signController.go

A.1 Missing amount check in signWithdraw [CRITICAL]

Description:

The signWithdraw API is used to generate signatures for the user to make them able to

withdraw tokens. However, there is amissing check on the amount, anyone can generate a

signature allowing him towithdrawany amount of tokens.

Code:

Listing 1: signController.go

111 amount, err := strconv.ParseFloat(request.Amount, 64)
112 if err != nil {
113 return c.Status(500).JSON(m.InternalError{Message:
114 "cannot parse string to float64"})
115 }
116 hash, err := instance.Hash(&bind.CallOpts{
117 From: ownerAddress,
118 }, clientAddress, "Withdraw", tokenAddress, FloatEtherToBigInt(amount),
119 deadline)
120 if err != nil {
121 log.Println("errorInSignWithdraw: ", err.Error())
122 return c.Status(500).JSON(m.InternalError{Message: err.Error()})
123 }
124

125 sig, err := crypto.Sign(hash[:], privateKey)
126 if err != nil {
127 return c.Status(500).JSON(m.InternalError{Message: err.Error()})
128 }
129 sig[64] += 27

9

130

131 return c.Status(200).JSON(&SignWithdrawResponse{
132 Signature: hexutil.Encode(sig[:]),
133 Deadline: deadline.Int64(),
134 AmountString: FloatEtherToBigInt(amount).String(),
135 })

Risk Level:

Likelihood – 5

Impact - 5

Recommendation:

It is recommended to verify that the user can generate a signature to withdraw only the

amount that was already deposited, this can be achieved by first getting a signature from

the user and extracting his address, then calling the contract to extract the deposited

amount using his address and restricting the user’s withdraw to be equal or less than this

amount.

Status - Fixed

The PXP team has fixed the issue by adding a verification to the amount that is provided by

the user.

A.2 Infinite Withdraw Leads To The Drain Of The

Contract [CRITICAL]

Description:

The SignWithdraw function generates the signature that the user will use in the contract

to get tokens from the contract. A malicious user can generate an infinite amount of valid

signatures and use themmultiple timeswith different amounts towithdraw tokens.

10

Code:

Listing 2: signController.go

162 sig, err := crypto.Sign(hash[:], privateKey)
163 if err != nil {
164 return c.Status(500).JSON(m.InternalError{Message: err.Error()})
165 }
166 sig[64] += 27
167

168 return c.Status(200).JSON(&SignWithdrawResponse{
169 Signature: hexutil.Encode(sig[:]),
170 Deadline: deadline.Int64(),
171 AmountString: FloatEtherToBigInt(amount).String(),
172 })

Exploit Scenario:

1. The malicious user will call the signWithdraw function with the amount 200 and get

the associated signature.

2. Themalicious userwill call a second the signWithdrawbutwith an amount of 150.

3. The attaquant will submit two requests for withdraw in the contracts with different

signatures, the call will succeed since he submitted themwith different signatures.

Risk Level:

Likelihood – 4

Impact - 5

Recommendation:

It is recommended to verify from the contract the number of tokens that were already

claimed by the user.

11

Status - Fixed

ThePXP teamhas fixed by adding the verification in the goLang file and also in the contract

by adding the following code in the contract.

Listing 3: PXPGateway.sol

1 require(_deadline <= block.timestamp, "Expired!");

A.3 AMaliciousUser Can TamperAddresses [HIGH]

Description:

In the SignWithdraw you are using the contract address, the token address and the client

address, these values are taken from the request. Thus, any user can inject in the body of

the request fake values of other addresses and ruin the logic of the contract.

Code:

Listing 4: signController.go

112 contract := common.HexToAddress(request.ContractADDR)
113 instance, err := PXPGateWayABI.NewPXPGateWayABI(contract, client)
114 if err != nil {
115 return c.Status(500).JSON(m.InternalError{Message: err.Error()})
116 }
117

118 clientAddress := common.HexToAddress(request.ClientADDR)
119 tokenAddress := common.HexToAddress(request.TokenADDR)

Risk Level:

Likelihood – 4

Impact - 4

12

Recommendation:

Thecontract and tokenaddressesshouldbehard-codedand for theuseraddress, it should

be extracted from the signature.

Status - Fixed

The PXP team has fixed the issue by hard-coding the contract and token addresses and

extracting the user’s address from the signature.

B routes.go

B.1 API Exposed To ThePublic [CRITICAL]

Description:

The two APIs signWithdraw and signDeposit return a signature generated by the server,

these APIs are not protected by a middleware or an authorization mechanism, and thus

anyone can call them and generate the signature for a particular user and withdraw any

number of tokens.

Code:

Listing 5: routes.go

12 func Setup(app *fiber.App) {
13 api := app.Group(path)
14 app.Use(logger.New())
15

16 api.Post("/signWithdraw", controller.SignWithdraw)
17 api.Post("/signDeposit", controller.SignDeposit)
18 }

Recommendation:

Consider adding an authorizationmiddleware to verify the caller’s identity.

13

Risk Level:

Likelihood – 5

Impact - 5

Status - Fixed

ThePXP teamhas resolved the issue by adding a JWT authorizationmiddleware.

B.2 MissingMiddleware For An Inactive User [MEDIUM]

Description:

There is a missing check in the authentication process, the authentication should verify

whether the user is Inactive or not. Thus, in this case, an inactive user can interact with

theseAPIswithout any restriction.

Code:

Listing 6: routes.go

13 func Setup(app *fiber.App) {
14 api := app.Group(path)
15 app.Use(logger.New())
16

17 api.Post("/signWithdraw", controller.SignWithdraw)
18 api.Post("/signDeposit", controller.SignDeposit)
19 }

Recommendation:

Consider adding amiddleware that verifies the status of the user andmakes sure that it is

active.

14

Risk Level:

Likelihood – 3

Impact - 4

Status - Fixed

The PXP team has fixed the issue by adding a verification in the login step that makes sure

the user is active before returning the token.

C Authorizeservice.go

C.1 Wallet Authentication VerifedBy ThePrivate Key [HIGH]

Description:

TheGetAuthWallet function is used to verify theauthorizationof theuser, in the line 68 if the

pk is empty the function returnsaBadCredentialsmessage; otherwise it returns thepublic

address of the user. Thismethodwill harm the user’s privacy, since hewill be exposing his

private key to the server.

Code:

Listing 7: Authorizeservice.go

46 func GetAuthWallet(pk string, c *fiber.Ctx) (string, error) {
47 privateKey, err := crypto.HexToECDSA(pk)
48 if err != nil {
49 c.Status(fiber.StatusBadRequest).JSON(fiber.Map{
50 "error": "error get hexdata",
51 "msg": err.Error(),
52 })
53 return "", nil
54 }
55

56 publicKey := privateKey.Public()

15

57 publicKeyECDSA, ok := publicKey.(*ecdsa.PublicKey)
58 if !ok {
59 if err != nil {
60 c.Status(fiber.StatusBadRequest).JSON(fiber.Map{
61 "error": "error casting public key to ECDSA",
62 "msg": err.Error(),
63 })
64 return "", nil
65 }
66

67 }
68 if pk == "" {
69 c.Status(fiber.StatusUnauthorized).JSON(fiber.Map{
70 "error": "Bad Credentials",
71 })
72 return "", nil
73 }
74 fromAddress := crypto.PubkeyToAddress(*publicKeyECDSA)
75 return fromAddress.String(), nil
76 }

Recommendation:

Considerverifyingtheauthorizationusingonlythesignaturegeneratedbytheuser’swallet.

Risk Level:

Likelihood – 4

Impact - 4

Status - Fixed

ThePXP teamhas fixed the issue by removing the function.

16

C.2 Public Key CanBe Tampered [HIGH]

Description:

The query used in the Auth function takes the public key from the request, the issue here is

that anyone can tamper this valuewith another public addressother than the intendedone.

Code:

Listing 8: Authorizeservice.go

90 db := db.DBCtx
91 var user models.User
92 if err := db.Raw("EXECUTE m_user_login @m_owner = ? , @return_code = ?",
93 logIn.PublicKey, &returnCode).Scan(&user).Error; err != nil {
94 if err != gorm.ErrRecordNotFound {
95 log.Println(err.Error())
96 return c.Status(500).JSON(fiber.Map{
97 "message": "db error -> " + err.Error(),
98 "code": 500,
99 })
100 }
101 }

Recommendation:

Consider extracting the public address from the user’s signature.

Risk Level:

Likelihood – 4

Impact - 5

Status - Fixed

ThePXP teamhas fixed the issue by using the user’s signature to extract the address.

17

C.3 jwtSecret Is Hardcoded In The

Authorizeservice [MEDIUM]

Description:

TheAuthorizeservicemodule contains the jwtSecret used to sign the transactions is hard-

coded in the file. Therefore, allowinganyonewhohadaccess to thecode togenerate signed

transactions using the secret key.

Code:

Listing 9: Authorizeservice.go

23 const (
24 jwtSecret = "ea95b95c1976482f989db81903c01691"
25)

Recommendation:

Consider removing the jwtSecret from theAuthorizeservice.go file andstoring it in the .env

file, to note also that the .env should be added in the .gitignore.

Risk Level:

Likelihood – 3

Impact - 4

Status - Fixed

ThePXP teamhas fixed the issue by getting the jwtSecret value froman env file.

18

C.4 HS256UsedAsSigningAlgorithm [LOW]

Description:

The JWT authentication uses as an algorithm the HS256 which is a symmetric algorithm,

that means a single key is used to encrypt and decrypt data. In case of having untrusted

entities, thiswill cause an issue of verifying using only the shared key.

Code:

Listing 10: Authorizeservice.go

132 func createToken(userUid string, owner string) (MsgToken, error) {
133 var msgToken MsgToken
134 token := jwt.New(jwt.SigningMethodHS256)
135 claims := token.Claims.(jwt.MapClaims)
136 claims["sub"] = userUid
137 claims["owner"] = owner
138 claims["exp"] = time.Now().Add(time.Hour * 24).Unix()
139 t, err := token.SignedString([]byte(jwtSecret))
140 if err != nil {
141 return msgToken, err
142 }
143 msgToken.AccessToken = t

Listing 11: Authorizeservice.go

157 func AuthorizationRequired() fiber.Handler {
158 return jwtware.New(jwtware.Config{
159 // Filter: nil,
160 SuccessHandler: AuthSuccess,
161 ErrorHandler: AuthError,
162 SigningKey: []byte(jwtSecret),
163 // SigningKeys: nil,
164 SigningMethod: "HS256",
165 // ContextKey: nil,
166 // Claims: nil,

19

167 // TokenLookup: nil,
168 // AuthScheme: nil,
169 })
170 }

Recommendation:

Consider changing the algorithm to theRS256which is an asymmetric algorithm.

Risk Level:

Likelihood – 1

Impact - 2

Status - Acknowledged

C.5 Add The Public Address In The JWT

Token [INFORMATIONAL]

Description:

The JWT token generated using the createToken function contain the userId and the owner,

it is recommended to add the public address of the user to optimize the number of queries.

Code:

Listing 12: Authorizeservice.go

132 func createToken(userUid string, owner string) (MsgToken, error) {
133 var msgToken MsgToken
134 token := jwt.New(jwt.SigningMethodHS256)
135 claims := token.Claims.(jwt.MapClaims)
136 claims["sub"] = userUid
137 claims["owner"] = owner
138 claims["exp"] = time.Now().Add(time.Hour * 24).Unix()

20

139 t, err := token.SignedString([]byte(jwtSecret))
140 if err != nil {
141 return msgToken, err
142 }
143 msgToken.AccessToken = t

Recommendation:

Consider adding the public address of the user in the JWT token.

Status - Acknowledged

D Authservice.go

D.1 getSecretKeyReturnsPredictedOutput [LOW]

Description:

The getSecretKey function returns the secret located in the environment variable on the

system, if it is empty, it returns the string secretwhich is predictable and hard-coded.

Code:

Listing 13: Authservice.go

35 func getSecretKey() string {
36 secret := os.Getenv("SECRET")
37 if secret == "" {
38 secret = "secret"
39 }
40 return secret
41 }

Recommendation:

Remove the empty check, and return an error if secret is empty.

21

Risk Level:

Likelihood – 1

Impact - 1

Status - Fixed

ThePXP teamhas fixed the issue by removing the function.

E PXPGateWay.sol

E.1 withdrawTokenCanBeAbused [HIGH]

Description:

A malicious user can abuse the withdrawToken and withdraw the totality of tokens. A

security mechanism was already implemented by verifying that the _amount should be

less than _maximumWithdraw and also checking that the _latestWithdrawal was more

than 24 hours ago. The issue is that a user can bypass this by sending theirs token to a

differentwallet and calling a second time thewithdrawToken.

Code:

Listing 14: PXPGateWay.sol

170 function withdrawToken(
171 address _token,
172 uint256 _amount,
173 uint256 _deadline,
174 bytes memory signature
175) external nonReentrant {
176 require(
177 checkSignature(
178 msg.sender,
179 "Withdraw",
180 _token,

22

181 _amount,
182 _deadline,
183 signature
184),
185 "!sig"
186);
187 require(_token == ACCEPTED_TOKEN, "Token not accepted");
188 require(_amount <= _maximumWithdraw, "Over limit");
189 require(_amount >= _minimumWithdraw, "Lower Minimum");
190 require(
191 _latestWithdrawal[msg.sender] == 0 ||
192 _latestWithdrawal[msg.sender].add(24 hours) <= block.timestamp,
193 "24Hr."
194);
195 require(_signatureUsed[signature], "Hacked");
196

197 _latestWithdrawal[msg.sender] = block.timestamp;
198 _signatureUsed[signature] = true;
199

200 ERC20(_token).safeTransferFrom(WALLET, msg.sender, _amount);
201 emit Withdraw(msg.sender, _token, _amount);
202 }

Risk Level:

Likelihood – 2

Impact - 3

Recommendation:

A change in the architecture will be needed to remediate the risk, but if this feature is not

required, the verification on the _maximumWithdraw and the _latestWithdrawal can be

removed.

23

Status -Acknowledged

E.2 Overriding Completed Transactions [MEDIUM]

Description:

In the depositToken function, we are associating for each transaction the amount

deposited in the wallet. The issue here is that the _transactionId is inserted by the user.
Thus, a malicious user can use an existing transactionId and override the

_transactionIdCompletedmappingwith a lower amount.

Code:

Listing 15: PXPGateWay.sol

108 function depositToken(
109 address _token,
110 uint256 _amount,
111 uint256 _transactionId
112) external {
113 require(WALLET != address(0), "Gate Closed");
114 require(_token == ACCEPTED_TOKEN, "Token not accepted");
115 require(_amount >= _minimumDeposit, "Lower Minimum");
116

117 IERC20(_token).transferFrom(msg.sender, WALLET, _amount);
118 emit Deposit(msg.sender, _token, _amount);
119

120 _transactionIdCompleted[_transactionId] = _amount;
121 }

Risk Level:

Likelihood – 2

Impact - 3

24

Recommendation:

Use the transactionId as a private variable in the contract and for each deposit increment

the variable.

Status -Mitigated

The PXP team hasmitigated the issue by adding a require statement that ensures that the

transactionId is not yet completed.

Code:

Listing 16: PXPGateWay.sol

136 function depositToken(
137 address _token,
138 uint256 _amount,
139 uint256 _transactionId,
140 uint256 _deadline,
141 bytes memory signature
142) external {
143 require(WALLET != address(0), "Gate Closed");
144 require(_token == ACCEPTED_TOKEN, "Token not accepted");
145 require(_amount >= _minimumDeposit, "Lower Minimum");
146 require(
147 _transactionIdCompleted[_transactionId] == 0,
148 "Transaction already completed"
149);

E.3 Missing Transfer Verification [MEDIUM]

Description:

The ERC20 standard token implementation functions return the transaction status as a

Boolean. It is good practice to check for the return status of the function call to ensure that

the transactionwas successful.

25

It is the developer’s responsibility to enclose these function calls with require() to

ensure that, when the intended ERC20 function call returns false, the caller transaction

also fails. However, it ismostlymissed by developerswhen they carry out checks in effect,

the transactionwould always succeed, even if the token transfer did not.

Code:

Listing 17: PXPGateWay.sol

117 IERC20(_token).transferFrom(msg.sender, WALLET, _amount);
118 emit Deposit(msg.sender, _token, _amount);

Listing 18: PXPGateWay.sol

152 IERC20(_token).transferFrom(WALLET, msg.sender, _amount);
153 emit Withdraw(msg.sender, _token, _amount);

Risk Level:

Likelihood – 2

Impact - 4

Recommendation:

It is recommended to use the safeTransfer function from the safeERC20 implementation,

or put the transfer call inside an assert or require to verify that the transfer has passed

successfully.

Status - Fixed

ThePXPteamhasresolved the issuebyusing thesafeTransfer function fromthesafeERC20

implementation to ensure that the transfer has passed successfully.

26

E.4 MissingAddress Verification [LOW]

Description:

Certain functions lack a safety check in the address, the address-type argument should

include a zero-address test, otherwise, some of the contract’s functionality may become

inaccessible. The _banker, _token and _signer arguments should be different from the

address(0).

Code:

Listing 19: PXPGateWay.sol

62 function setWalletBanker(address _banker) external onlyRole(ADMIN_ROLE) {
63 WALLET = _banker;
64 }

Listing 20: PXPGateWay.sol

66 function setTokenAccept(address _token) external onlyRole(ADMIN_ROLE) {
67 ACCEPTED_TOKEN = _token;
68 }

Listing 21: PXPGateWay.sol

74 function setSigner(address _signer) external onlyRole(ADMIN_ROLE) {
75 SIGNER = _signer;
76 }

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

It is recommendedtoverify that theaddressesprovided in theargumentsaredifferent from

the address(0).

27

Status - Fixed

The PXP team has resolved the issue by adding require statements that verify that the

address provided in the arguments are different from the address(0).

E.5 Missing Value Verification [LOW]

Description:

Certain functions lack a safety check in the values, the values of the arguments should be

verified to allow only the ones that gowith the contract’s logic. The _minimum and _maximum
variable should be different from 0, and the _maximum should be higher than the _minimum
variable.

Code:

Listing 22: PXPGateWay.sol

70 function setMinimumDeposit(uint256 _minimum) external onlyRole(ADMIN_ROLE) {
71 _minimumDeposit = _minimum;
72 }

Listing 23: PXPGateWay.sol

82 function setMinimumWithdraw(uint256 _minimum)
83 external
84 onlyRole(ADMIN_ROLE)
85 {
86 _minimumWithdraw = _minimum;
87 }

Listing 24: PXPGateWay.sol

89 function setMaximumWithdraw(uint256 _maximum)
90 external
91 onlyRole(ADMIN_ROLE)
92 {
93 _maximumWithdraw = _maximum;}

28

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

It’s recommended to verify the values provided in the arguments. The concerns can be

resolved by utilizing a require statement.

Status - Fixed

The PXP team has resolved the issue by adding require statements to verify the values

coming from the arguments.

E.6 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.4. Contracts should be deployed

using the same compiler version and flags that were used during the testing process.

Locking the pragma helps ensure that contracts are not unintentionally deployed using

another pragma, such as an obsolete version, that may introduce issues in the contract

system.

Code:

Listing 25: PXPGateWay.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.4;

Risk Level:

Likelihood – 1

Impact - 2

29

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma

version.

Status - Fixed

ThePXP teamhas resolved the issue by locking the pragma version to 0.8.6.

F PXPToken.sol

F.1 ApproveRaceCondition [LOW]

Description:

The ERC4626 contract uses the ERC20,the standard ERC20 implementation contains a

widely known racing condition in it approve function, wherein a spender can witness the

token owner broadcast a transaction altering their approval and quickly sign and

broadcast a transaction using transferFrom to move the current approved amount from

the owner’s balance to the spender. If the spender’s transaction is validated before the

owner’s, the spenderwill be able to get both approval amounts of both transactions.

Code:

Listing 26: PXPToken.sol

8 contract PXPToken is ERC20, Pausable, Ownable {

Risk Level:

Likelihood – 1

Impact - 3

30

Recommendation:

Use increaseAllowance and decreaseAllowance functions to modify the approval amount

instead of using the approve function tomodify it.

Status - Akcnowledged

ThePXP teamhas acknowledged the risk.

F.2 Owner CanRenounceOwnership [LOW]

Description:

Typically, the contract’s owner is the account that deploys the contract. As a result, the

owner can perform certain privileged activities. The renounceOwnership function is used

in smart contracts to renounce ownership. However, if the contract’s ownership has never

been transferred before renouncing it, it will never have an Owner, which may result in a

denial of service.

Code:

Listing 27: PXPToken.sol

8 contract PXPToken is ERC20, Pausable, Ownable {

Risk Level:

Likelihood – 1

Impact - 3

Recommendation:

It is advised that the Owner cannot call renounceOwnership without first transferring

ownership to a different address. Additionally, if a multi-signature wallet is utilized,

executing the renounceOwnership method will require two or more users to sign the

transaction. Alternatively, the renounced ownership functionality can be disabled by

overriding it.

31

Status -Acknowledged

ThePXP teamhas acknowledged the risk.

F.3 Floating Pragma [LOW]

Description:

The contract makes use of the floating-point pragma 0.8.0. Contracts should be deployed

using the same compiler version and flags that were used during the testing process.

Locking the pragma helps ensure that contracts are not unintentionally deployed using

another pragma, such as an obsolete version, that may introduce issues in the contract

system.

Code:

Listing 28: PXPToken.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.0;

Risk Level:

Likelihood – 1

Impact - 2

Recommendation:

Consider locking the pragma version. It is advised that floating pragma should not be used

in production. Both truffle-config.js and hardhat.config.js support locking the pragma

version.

Status - Acknowledged

ThePXP teamhas acknowledged the risk.

32

4 Best Practices

BP.1 Variables should be initialized first

Description:

The _maximumWithdraw, _minimumDeposit, _minimumWithdraw, ACCEPTED_TOKEN and

WALLET variables should be initialized in the initialize function. Otherwise, if someone

calls the depositToken or the withdrawToken function, unexpected behaviors will be

generated.

Code:

Listing 29: PXPGateWay.sol (Line 26)

1 address private ACCEPTED_TOKEN;
2 address private WALLET;
3

4 uint256 private _maximumWithdraw;
5 uint256 private _minimumDeposit;

Listing 30: PXPGateWay.sol (Line 37)

1 uint256 private _minimumWithdraw;

33

5 Static Analysis (Slither)
Description:

ShellBoxes expanded the coverage of the specific contract areas using automated testing

methodologies. Slither, a Solidity static analysis framework, was one of the tools used.

Slither was run on all-scoped contracts in both text and binary formats. This tool can be

used to test mathematical relationships between Solidity instances statically and

variables that allow for the detection of errors or inconsistent usage of the contracts’ APIs

throughout the entire codebase.

Results:

ERC1967UpgradeUpgradeable._functionDelegateCall(address,bytes) (../openzepp
elin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeabl
e.sol#198-204) uses delegatecall to a input-controlled function id

- (success,returndata) = target.delegatecall(data) (../openzeppelin
-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.so
l#202)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#co
ntrolled-delegatecall

AccessControlUpgradeable.__gap (../openzeppelin-contracts-upgradeable/contr
acts/access/AccessControlUpgradeable.sol#247) shadows:

- ERC165Upgradeable.__gap (../openzeppelin-contracts-upgradeable/co
ntracts/utils/introspection/ERC165Upgradeable.sol#41)

- ContextUpgradeable.__gap (../openzeppelin-contracts-upgradeable/c
ontracts/utils/ContextUpgradeable.sol#36)
UUPSUpgradeable.__gap (../openzeppelin-contracts-upgradeable/contracts/prox
y/utils/UUPSUpgradeable.sol#107) shadows:

- ERC1967UpgradeUpgradeable.__gap (../openzeppelin-contracts-upgrad
eable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#211)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#st
ate-variable-shadowing

34

PXPGateWay.depositToken(address,uint256,uint256) (PXPGateWay.sol#108-121) i
gnores return value by IERC20(_token).transferFrom(msg.sender,WALLET,_amoun
t) (PXPGateWay.sol#117)
PXPGateWay.withdrawToken(address,uint256,uint256,bytes) (PXPGateWay.sol#123
-154) ignores return value by IERC20(_token).transferFrom(WALLET,msg.sender
,_amount) (PXPGateWay.sol#152)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
checked-transfer

PXPGateWay (PXPGateWay.sol#15-182) is an upgradeable contract that does not
protect its initiliaze functions: PXPGateWay.initialize() (PXPGateWay.sol#
47-54). Anyone can delete the contract with: UUPSUpgradeable.upgradeTo(addr
ess) (../openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgra
deable.sol#72-75)UUPSUpgradeable.upgradeToAndCall(address,bytes) (../openze
ppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol#85-8
8)Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#
unprotected-upgradeable-contract

ERC1967UpgradeUpgradeable._upgradeToAndCallUUPS(address,bytes,bool).slot (.
./openzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967Upgrade
Upgradeable.sol#98) is a local variable never initialized
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
initialized-local-variables

ERC1967UpgradeUpgradeable._upgradeToAndCallUUPS(address,bytes,bool) (../ope
nzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgra
deable.sol#87-105) ignores return value by IERC1822ProxiableUpgradeable(new
Implementation).proxiableUUID() (../openzeppelin-contracts-upgradeable/cont
racts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#98-102)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
used-return

PXPGateWay.setWalletBanker(address)._banker (PXPGateWay.sol#62) lacks a zer

35

o-check on :
- WALLET = _banker (PXPGateWay.sol#63)

PXPGateWay.setTokenAccept(address)._token (PXPGateWay.sol#66) lacks a zero-
check on :

- ACCEPTED_TOKEN = _token (PXPGateWay.sol#67)
PXPGateWay.setSigner(address)._signer (PXPGateWay.sol#74) lacks a zero-chec
k on :

- SIGNER = _signer (PXPGateWay.sol#75)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#mi
ssing-zero-address-validation

Variable 'ERC1967UpgradeUpgradeable._upgradeToAndCallUUPS(address,bytes,boo
l).slot (../openzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1
967UpgradeUpgradeable.sol#98)' in ERC1967UpgradeUpgradeable._upgradeToAndCa
llUUPS(address,bytes,bool) (../openzeppelin-contracts-upgradeable/contracts
/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#87-105) potentially used befor
e declaration: require(bool,string)(slot == _IMPLEMENTATION_SLOT,ERC1967Upg
rade: unsupported proxiableUUID) (../openzeppelin-contracts-upgradeable/con
tracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#99)
Variable 'ECDSA.tryRecover(bytes32,bytes).r (../openzeppelin-contracts/cont
racts/utils/cryptography/ECDSA.sol#59)' in ECDSA.tryRecover(bytes32,bytes)
(../openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol#54-83) po
tentially used before declaration: r = mload(uint256)(signature + 0x20) (..
/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol#76)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pr
e-declaration-usage-of-local-variables

Reentrancy in PXPGateWay.depositToken(address,uint256,uint256) (PXPGateWay.
sol#108-121):

External calls:
- IERC20(_token).transferFrom(msg.sender,WALLET,_amount) (PXPGateWa

y.sol#117)
State variables written after the call(s):
- _transactionIdCompleted[_transactionId] = _amount (PXPGateWay.sol

36

#120)
Reentrancy in PXPGateWay.withdrawToken(address,uint256,uint256,bytes) (PXPG
ateWay.sol#123-154):

External calls:
- require(bool,string)(checkSignature(msg.sender,Withdraw,_token,_a

mount,_deadline,signature),!sig) (PXPGateWay.sol#129-139)
- SignatureChecker.isValidSignatureNow(SIGNER,h,signature)

(PXPGateWay.sol#165)
- (success,result) = signer.staticcall(abi.encodeWithSelect

or(IERC1271.isValidSignature.selector,hash,signature)) (../openzeppelin-con
tracts/contracts/utils/cryptography/SignatureChecker.sol#30-32)

State variables written after the call(s):
- _latestWithdrawal[msg.sender] = block.timestamp (PXPGateWay.sol#1

50)
- _signatureUsed[signature] = true (PXPGateWay.sol#151)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#re
entrancy-vulnerabilities-2

Reentrancy in PXPGateWay.depositToken(address,uint256,uint256) (PXPGateWay.
sol#108-121):

External calls:
- IERC20(_token).transferFrom(msg.sender,WALLET,_amount) (PXPGateWa

y.sol#117)
Event emitted after the call(s):
- Deposit(msg.sender,_token,_amount) (PXPGateWay.sol#118)

Reentrancy in PXPGateWay.withdrawToken(address,uint256,uint256,bytes) (PXPG
ateWay.sol#123-154):

External calls:
- require(bool,string)(checkSignature(msg.sender,Withdraw,_token,_a

mount,_deadline,signature),!sig) (PXPGateWay.sol#129-139)
- SignatureChecker.isValidSignatureNow(SIGNER,h,signature)

(PXPGateWay.sol#165)
- (success,result) = signer.staticcall(abi.encodeWithSelect

or(IERC1271.isValidSignature.selector,hash,signature)) (../openzeppelin-con

37

tracts/contracts/utils/cryptography/SignatureChecker.sol#30-32)
- IERC20(_token).transferFrom(WALLET,msg.sender,_amount) (PXPGateWa

y.sol#152)
Event emitted after the call(s):
- Withdraw(msg.sender,_token,_amount) (PXPGateWay.sol#153)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#re
entrancy-vulnerabilities-3

PXPGateWay.withdrawToken(address,uint256,uint256,bytes) (PXPGateWay.sol#123
-154) uses timestamp for comparisons

Dangerous comparisons:
- require(bool,string)(_latestWithdrawal[msg.sender] == 0 || _lates

tWithdrawal[msg.sender].add(86400) <= block.timestamp,24Hr.) (PXPGateWay.so
l#143-147)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#bl
ock-timestamp

AddressUpgradeable.verifyCallResult(bool,bytes,string) (../openzeppelin-con
tracts-upgradeable/contracts/utils/AddressUpgradeable.sol#174-194) uses ass
embly

- INLINE ASM (../openzeppelin-contracts-upgradeable/contracts/utils
/AddressUpgradeable.sol#186-189)
StorageSlotUpgradeable.getAddressSlot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#52-56) uses assembly

- INLINE ASM (../openzeppelin-contracts-upgradeable/contracts/utils
/StorageSlotUpgradeable.sol#53-55)
StorageSlotUpgradeable.getBooleanSlot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#61-65) uses assembly

- INLINE ASM (../openzeppelin-contracts-upgradeable/contracts/utils
/StorageSlotUpgradeable.sol#62-64)
StorageSlotUpgradeable.getBytes32Slot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#70-74) uses assembly

- INLINE ASM (../openzeppelin-contracts-upgradeable/contracts/utils
/StorageSlotUpgradeable.sol#71-73)

38

StorageSlotUpgradeable.getUint256Slot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#79-83) uses assembly

- INLINE ASM (../openzeppelin-contracts-upgradeable/contracts/utils
/StorageSlotUpgradeable.sol#80-82)
Address.isContract(address) (../openzeppelin-contracts/contracts/utils/Addr
ess.sol#26-36) uses assembly

- INLINE ASM (../openzeppelin-contracts/contracts/utils/Address.sol
#32-34)
Address.verifyCallResult(bool,bytes,string) (../openzeppelin-contracts/cont
racts/utils/Address.sol#195-215) uses assembly

- INLINE ASM (../openzeppelin-contracts/contracts/utils/Address.sol
#207-210)
ECDSA.tryRecover(bytes32,bytes) (../openzeppelin-contracts/contracts/utils/
cryptography/ECDSA.sol#54-83) uses assembly

- INLINE ASM (../openzeppelin-contracts/contracts/utils/cryptograph
y/ECDSA.sol#64-68)

- INLINE ASM (../openzeppelin-contracts/contracts/utils/cryptograph
y/ECDSA.sol#75-78)
ECDSA.tryRecover(bytes32,bytes32,bytes32) (../openzeppelin-contracts/contra
cts/utils/cryptography/ECDSA.sol#112-124) uses assembly

- INLINE ASM (../openzeppelin-contracts/contracts/utils/cryptograph
y/ECDSA.sol#119-122)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#as
sembly-usage

Different versions of Solidity is used:
- Version used: ['^0.8.0', '^0.8.1', '^0.8.2', '^0.8.4']
- ^0.8.4 (PXPGateWay.sol#2)
- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/access/Ac

cessControlUpgradeable.sol#4)
- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/access/IA

ccessControlUpgradeable.sol#4)
- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/interface

s/draft-IERC1822Upgradeable.sol#4)

39

- ^0.8.2 (../openzeppelin-contracts-upgradeable/contracts/proxy/ERC
1967/ERC1967UpgradeUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/proxy/bea
con/IBeaconUpgradeable.sol#4)

- ^0.8.2 (../openzeppelin-contracts-upgradeable/contracts/proxy/uti
ls/Initializable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/proxy/uti
ls/UUPSUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/security/
ReentrancyGuardUpgradeable.sol#4)

- ^0.8.1 (../openzeppelin-contracts-upgradeable/contracts/utils/Add
ressUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils/Con
textUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils/Sto
rageSlotUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils/Str
ingsUpgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils/int
rospection/ERC165Upgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils/int
rospection/IERC165Upgradeable.sol#4)

- ^0.8.0 (../openzeppelin-contracts/contracts/interfaces/IERC1271.s
ol#3)

- ^0.8.0 (../openzeppelin-contracts/contracts/token/ERC20/IERC20.so
l#3)

- ^0.8.0 (../openzeppelin-contracts/contracts/utils/Address.sol#3)
- ^0.8.0 (../openzeppelin-contracts/contracts/utils/cryptography/EC

DSA.sol#3)
- ^0.8.0 (../openzeppelin-contracts/contracts/utils/cryptography/Si

gnatureChecker.sol#3)
- ^0.8.0 (../openzeppelin-contracts/contracts/utils/math/SafeMath.s

ol#3)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#di

40

fferent-pragma-directives-are-used

AccessControlUpgradeable.__AccessControl_init_unchained() (../openzeppelin-
contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#54-55)
is never used and should be removed
AccessControlUpgradeable._setRoleAdmin(bytes32,bytes32) (../openzeppelin-co
ntracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#212-216)
is never used and should be removed
AccessControlUpgradeable._setupRole(bytes32,address) (../openzeppelin-contr
acts-upgradeable/contracts/access/AccessControlUpgradeable.sol#203-205) is
never used and should be removed
Address.functionCall(address,bytes) (../openzeppelin-contracts/contracts/ut
ils/Address.sol#79-81) is never used and should be removed
Address.functionCall(address,bytes,string) (../openzeppelin-contracts/contr
acts/utils/Address.sol#89-95) is never used and should be removed
Address.functionCallWithValue(address,bytes,uint256) (../openzeppelin-contr
acts/contracts/utils/Address.sol#108-114) is never used and should be remov
ed
Address.functionCallWithValue(address,bytes,uint256,string) (../openzeppeli
n-contracts/contracts/utils/Address.sol#122-133) is never used and should b
e removed
Address.functionDelegateCall(address,bytes) (../openzeppelin-contracts/cont
racts/utils/Address.sol#168-170) is never used and should be removed
Address.functionDelegateCall(address,bytes,string) (../openzeppelin-contrac
ts/contracts/utils/Address.sol#178-187) is never used and should be removed
Address.functionStaticCall(address,bytes) (../openzeppelin-contracts/contra
cts/utils/Address.sol#141-143) is never used and should be removed
Address.functionStaticCall(address,bytes,string) (../openzeppelin-contracts
/contracts/utils/Address.sol#151-160) is never used and should be removed
Address.isContract(address) (../openzeppelin-contracts/contracts/utils/Addr
ess.sol#26-36) is never used and should be removed
Address.sendValue(address,uint256) (../openzeppelin-contracts/contracts/uti
ls/Address.sol#54-59) is never used and should be removed
Address.verifyCallResult(bool,bytes,string) (../openzeppelin-contracts/cont

41

racts/utils/Address.sol#195-215) is never used and should be removed
AddressUpgradeable.functionCall(address,bytes) (../openzeppelin-contracts-u
pgradeable/contracts/utils/AddressUpgradeable.sol#85-87) is never used and
should be removed
AddressUpgradeable.functionCall(address,bytes,string) (../openzeppelin-cont
racts-upgradeable/contracts/utils/AddressUpgradeable.sol#95-101) is never u
sed and should be removed
AddressUpgradeable.functionCallWithValue(address,bytes,uint256) (../openzep
pelin-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol#114-120)
is never used and should be removed
AddressUpgradeable.functionCallWithValue(address,bytes,uint256,string) (../
openzeppelin-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol#1
28-139) is never used and should be removed
AddressUpgradeable.functionStaticCall(address,bytes) (../openzeppelin-contr
acts-upgradeable/contracts/utils/AddressUpgradeable.sol#147-149) is never u
sed and should be removed
AddressUpgradeable.functionStaticCall(address,bytes,string) (../openzeppeli
n-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol#157-166) is
never used and should be removed
AddressUpgradeable.sendValue(address,uint256) (../openzeppelin-contracts-up
gradeable/contracts/utils/AddressUpgradeable.sol#60-65) is never used and s
hould be removed
ContextUpgradeable.__Context_init() (../openzeppelin-contracts-upgradeable/
contracts/utils/ContextUpgradeable.sol#18-19) is never used and should be r
emoved
ContextUpgradeable.__Context_init_unchained() (../openzeppelin-contracts-up
gradeable/contracts/utils/ContextUpgradeable.sol#21-22) is never used and s
hould be removed
ContextUpgradeable._msgData() (../openzeppelin-contracts-upgradeable/contra
cts/utils/ContextUpgradeable.sol#27-29) is never used and should be removed
ECDSA._throwError(ECDSA.RecoverError) (../openzeppelin-contracts/contracts/
utils/cryptography/ECDSA.sol#20-32) is never used and should be removed
ECDSA.recover(bytes32,bytes) (../openzeppelin-contracts/contracts/utils/cry
ptography/ECDSA.sol#99-103) is never used and should be removed

42

ECDSA.recover(bytes32,bytes32,bytes32) (../openzeppelin-contracts/contracts
/utils/cryptography/ECDSA.sol#131-139) is never used and should be removed
ECDSA.recover(bytes32,uint8,bytes32,bytes32) (../openzeppelin-contracts/con
tracts/utils/cryptography/ECDSA.sol#182-191) is never used and should be re
moved
ECDSA.toTypedDataHash(bytes32,bytes32) (../openzeppelin-contracts/contracts
/utils/cryptography/ECDSA.sol#216-218) is never used and should be removed
ERC165Upgradeable.__ERC165_init() (../openzeppelin-contracts-upgradeable/co
ntracts/utils/introspection/ERC165Upgradeable.sol#24-25) is never used and
should be removed
ERC165Upgradeable.__ERC165_init_unchained() (../openzeppelin-contracts-upgr
adeable/contracts/utils/introspection/ERC165Upgradeable.sol#27-28) is never
used and should be removed
ERC1967UpgradeUpgradeable.__ERC1967Upgrade_init() (../openzeppelin-contract
s-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#21-22)
is never used and should be removed
ERC1967UpgradeUpgradeable.__ERC1967Upgrade_init_unchained() (../openzeppeli
n-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.s
ol#24-25) is never used and should be removed
ERC1967UpgradeUpgradeable._changeAdmin(address) (../openzeppelin-contracts-
upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#139-142)
is never used and should be removed
ERC1967UpgradeUpgradeable._getAdmin() (../openzeppelin-contracts-upgradeabl
e/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#122-124) is never u
sed and should be removed
ERC1967UpgradeUpgradeable._getBeacon() (../openzeppelin-contracts-upgradeab
le/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#158-160) is never
used and should be removed
ERC1967UpgradeUpgradeable._setAdmin(address) (../openzeppelin-contracts-upg
radeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#129-132) is
never used and should be removed
ERC1967UpgradeUpgradeable._setBeacon(address) (../openzeppelin-contracts-up
gradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#165-172) is
never used and should be removed

43

ERC1967UpgradeUpgradeable._upgradeBeaconToAndCall(address,bytes,bool) (../o
penzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpg
radeable.sol#180-190) is never used and should be removed
Initializable._disableInitializers() (../openzeppelin-contracts-upgradeable
/contracts/proxy/utils/Initializable.sol#129-131) is never used and should
be removed
PXPGateWay._authorizeUpgrade(address) (PXPGateWay.sol#56-60) is never used
and should be removed
ReentrancyGuardUpgradeable.__ReentrancyGuard_init() (../openzeppelin-contra
cts-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol#40-42) is
never used and should be removed
ReentrancyGuardUpgradeable.__ReentrancyGuard_init_unchained() (../openzeppe
lin-contracts-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol
#44-46) is never used and should be removed
SafeMath.div(uint256,uint256) (../openzeppelin-contracts/contracts/utils/ma
th/SafeMath.sol#134-136) is never used and should be removed
SafeMath.div(uint256,uint256,string) (../openzeppelin-contracts/contracts/u
tils/math/SafeMath.sol#190-199) is never used and should be removed
SafeMath.mod(uint256,uint256) (../openzeppelin-contracts/contracts/utils/ma
th/SafeMath.sol#150-152) is never used and should be removed
SafeMath.mod(uint256,uint256,string) (../openzeppelin-contracts/contracts/u
tils/math/SafeMath.sol#216-225) is never used and should be removed
SafeMath.mul(uint256,uint256) (../openzeppelin-contracts/contracts/utils/ma
th/SafeMath.sol#120-122) is never used and should be removed
SafeMath.sub(uint256,uint256) (../openzeppelin-contracts/contracts/utils/ma
th/SafeMath.sol#106-108) is never used and should be removed
SafeMath.sub(uint256,uint256,string) (../openzeppelin-contracts/contracts/u
tils/math/SafeMath.sol#167-176) is never used and should be removed
SafeMath.tryAdd(uint256,uint256) (../openzeppelin-contracts/contracts/utils
/math/SafeMath.sol#21-27) is never used and should be removed
SafeMath.tryDiv(uint256,uint256) (../openzeppelin-contracts/contracts/utils
/math/SafeMath.sol#63-68) is never used and should be removed
SafeMath.tryMod(uint256,uint256) (../openzeppelin-contracts/contracts/utils
/math/SafeMath.sol#75-80) is never used and should be removed

44

SafeMath.tryMul(uint256,uint256) (../openzeppelin-contracts/contracts/utils
/math/SafeMath.sol#46-56) is never used and should be removed
SafeMath.trySub(uint256,uint256) (../openzeppelin-contracts/contracts/utils
/math/SafeMath.sol#34-39) is never used and should be removed
StorageSlotUpgradeable.getBytes32Slot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#70-74) is never used
and should be removed
StorageSlotUpgradeable.getUint256Slot(bytes32) (../openzeppelin-contracts-u
pgradeable/contracts/utils/StorageSlotUpgradeable.sol#79-83) is never used
and should be removed
StringsUpgradeable.toHexString(uint256) (../openzeppelin-contracts-upgradea
ble/contracts/utils/StringsUpgradeable.sol#40-51) is never used and should
be removed
StringsUpgradeable.toString(uint256) (../openzeppelin-contracts-upgradeable
/contracts/utils/StringsUpgradeable.sol#15-35) is never used and should be
removed
UUPSUpgradeable.__UUPSUpgradeable_init_unchained() (../openzeppelin-contrac
ts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol#26-27) is never us
ed and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#de
ad-code

Pragma version^0.8.4 (PXPGateWay.sol#2) necessitates a version too recent t
o be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/acces
s/AccessControlUpgradeable.sol#4) necessitates a version too recent to be t
rusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/acces
s/IAccessControlUpgradeable.sol#4) necessitates a version too recent to be
trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/inter
faces/draft-IERC1822Upgradeable.sol#4) necessitates a version too recent to
be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.2 (../openzeppelin-contracts-upgradeable/contracts/proxy

45

/ERC1967/ERC1967UpgradeUpgradeable.sol#4) necessitates a version too recent
to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/proxy
/beacon/IBeaconUpgradeable.sol#4) necessitates a version too recent to be t
rusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.2 (../openzeppelin-contracts-upgradeable/contracts/proxy
/utils/Initializable.sol#4) necessitates a version too recent to be trusted
. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/proxy
/utils/UUPSUpgradeable.sol#4) necessitates a version too recent to be trust
ed. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/secur
ity/ReentrancyGuardUpgradeable.sol#4) necessitates a version too recent to
be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.1 (../openzeppelin-contracts-upgradeable/contracts/utils
/AddressUpgradeable.sol#4) necessitates a version too recent to be trusted.
Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils
/ContextUpgradeable.sol#4) necessitates a version too recent to be trusted.
Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils
/StorageSlotUpgradeable.sol#4) necessitates a version too recent to be trus
ted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils
/StringsUpgradeable.sol#4) necessitates a version too recent to be trusted.
Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils
/introspection/ERC165Upgradeable.sol#4) necessitates a version too recent t
o be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts-upgradeable/contracts/utils
/introspection/IERC165Upgradeable.sol#4) necessitates a version too recent
to be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/interfaces/IERC12
71.sol#3) necessitates a version too recent to be trusted. Consider deployi

46

ng with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/token/ERC20/IERC2
0.sol#3) necessitates a version too recent to be trusted. Consider deployin
g with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/utils/Address.sol
#3) necessitates a version too recent to be trusted. Consider deploying wit
h 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/utils/cryptograph
y/ECDSA.sol#3) necessitates a version too recent to be trusted. Consider de
ploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/utils/cryptograph
y/SignatureChecker.sol#3) necessitates a version too recent to be trusted.
Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/utils/math/SafeMa
th.sol#3) necessitates a version too recent to be trusted. Consider deployi
ng with 0.6.12/0.7.6
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

Low level call in ERC1967UpgradeUpgradeable._functionDelegateCall(address,b
ytes) (../openzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC196
7UpgradeUpgradeable.sol#198-204):

- (success,returndata) = target.delegatecall(data) (../openzeppelin
-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.so
l#202)
Low level call in AddressUpgradeable.sendValue(address,uint256) (../openzep
pelin-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol#60-65):

- (success) = recipient.call{value: amount}() (../openzeppelin-cont
racts-upgradeable/contracts/utils/AddressUpgradeable.sol#63)
Low level call in AddressUpgradeable.functionCallWithValue(address,bytes,ui
nt256,string) (../openzeppelin-contracts-upgradeable/contracts/utils/Addres
sUpgradeable.sol#128-139):

- (success,returndata) = target.call{value: value}(data) (../openze

47

ppelin-contracts-upgradeable/contracts/utils/AddressUpgradeable.sol#137)
Low level call in AddressUpgradeable.functionStaticCall(address,bytes,strin
g) (../openzeppelin-contracts-upgradeable/contracts/utils/AddressUpgradeabl
e.sol#157-166):

- (success,returndata) = target.staticcall(data) (../openzeppelin-c
ontracts-upgradeable/contracts/utils/AddressUpgradeable.sol#164)
Low level call in Address.sendValue(address,uint256) (../openzeppelin-contr
acts/contracts/utils/Address.sol#54-59):

- (success) = recipient.call{value: amount}() (../openzeppelin-cont
racts/contracts/utils/Address.sol#57)
Low level call in Address.functionCallWithValue(address,bytes,uint256,strin
g) (../openzeppelin-contracts/contracts/utils/Address.sol#122-133):

- (success,returndata) = target.call{value: value}(data) (../openze
ppelin-contracts/contracts/utils/Address.sol#131)
Low level call in Address.functionStaticCall(address,bytes,string) (../open
zeppelin-contracts/contracts/utils/Address.sol#151-160):

- (success,returndata) = target.staticcall(data) (../openzeppelin-c
ontracts/contracts/utils/Address.sol#158)
Low level call in Address.functionDelegateCall(address,bytes,string) (../op
enzeppelin-contracts/contracts/utils/Address.sol#178-187):

- (success,returndata) = target.delegatecall(data) (../openzeppelin
-contracts/contracts/utils/Address.sol#185)
Low level call in SignatureChecker.isValidSignatureNow(address,bytes32,byte
s) (../openzeppelin-contracts/contracts/utils/cryptography/SignatureChecker
.sol#20-34):

- (success,result) = signer.staticcall(abi.encodeWithSelector(IERC1
271.isValidSignature.selector,hash,signature)) (../openzeppelin-contracts/c
ontracts/utils/cryptography/SignatureChecker.sol#30-32)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#lo
w-level-calls

Parameter PXPGateWay.setWalletBanker(address)._banker (PXPGateWay.sol#62) i
s not in mixedCase
Parameter PXPGateWay.setTokenAccept(address)._token (PXPGateWay.sol#66) is

48

not in mixedCase
Parameter PXPGateWay.setMinimumDeposit(uint256)._minimum (PXPGateWay.sol#70
) is not in mixedCase
Parameter PXPGateWay.setSigner(address)._signer (PXPGateWay.sol#74) is not
in mixedCase
Parameter PXPGateWay.setMinimumWithdraw(uint256)._minimum (PXPGateWay.sol#8
2) is not in mixedCase
Parameter PXPGateWay.setMaximumWithdraw(uint256)._maximum (PXPGateWay.sol#8
9) is not in mixedCase
Parameter PXPGateWay.getTransactionIdAmount(uint256)._transactionId (PXPGat
eWay.sol#100) is not in mixedCase
Parameter PXPGateWay.depositToken(address,uint256,uint256)._token (PXPGateW
ay.sol#109) is not in mixedCase
Parameter PXPGateWay.depositToken(address,uint256,uint256)._amount (PXPGate
Way.sol#110) is not in mixedCase
Parameter PXPGateWay.depositToken(address,uint256,uint256)._transactionId (
PXPGateWay.sol#111) is not in mixedCase
Parameter PXPGateWay.withdrawToken(address,uint256,uint256,bytes)._token (P
XPGateWay.sol#124) is not in mixedCase
Parameter PXPGateWay.withdrawToken(address,uint256,uint256,bytes)._amount (
PXPGateWay.sol#125) is not in mixedCase
Parameter PXPGateWay.withdrawToken(address,uint256,uint256,bytes)._deadline
(PXPGateWay.sol#126) is not in mixedCase
Variable PXPGateWay.ACCEPTED_TOKEN (PXPGateWay.sol#26) is not in mixedCase
Variable PXPGateWay.WALLET (PXPGateWay.sol#27) is not in mixedCase
Variable PXPGateWay.SIGNER (PXPGateWay.sol#32) is not in mixedCase
Function AccessControlUpgradeable.__AccessControl_init() (../openzeppelin-c
ontracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#51-52) i
s not in mixedCase
Function AccessControlUpgradeable.__AccessControl_init_unchained() (../open
zeppelin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.so
l#54-55) is not in mixedCase
Variable AccessControlUpgradeable.__gap (../openzeppelin-contracts-upgradea
ble/contracts/access/AccessControlUpgradeable.sol#247) is not in mixedCase

49

Function ERC1967UpgradeUpgradeable.__ERC1967Upgrade_init() (../openzeppelin
-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.so
l#21-22) is not in mixedCase
Function ERC1967UpgradeUpgradeable.__ERC1967Upgrade_init_unchained() (../op
enzeppelin-contracts-upgradeable/contracts/proxy/ERC1967/ERC1967UpgradeUpgr
adeable.sol#24-25) is not in mixedCase
Variable ERC1967UpgradeUpgradeable.__gap (../openzeppelin-contracts-upgrade
able/contracts/proxy/ERC1967/ERC1967UpgradeUpgradeable.sol#211) is not in m
ixedCase
Function UUPSUpgradeable.__UUPSUpgradeable_init() (../openzeppelin-contract
s-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol#23-24) is not in mi
xedCase
Function UUPSUpgradeable.__UUPSUpgradeable_init_unchained() (../openzeppeli
n-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol#26-27) is
not in mixedCase
Variable UUPSUpgradeable.__gap (../openzeppelin-contracts-upgradeable/contr
acts/proxy/utils/UUPSUpgradeable.sol#107) is not in mixedCase
Variable UUPSUpgradeable.__self (../openzeppelin-contracts-upgradeable/cont
racts/proxy/utils/UUPSUpgradeable.sol#29) is not in mixedCase
Function ReentrancyGuardUpgradeable.__ReentrancyGuard_init() (../openzeppel
in-contracts-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol#
40-42) is not in mixedCase
Function ReentrancyGuardUpgradeable.__ReentrancyGuard_init_unchained() (../
openzeppelin-contracts-upgradeable/contracts/security/ReentrancyGuardUpgrad
eable.sol#44-46) is not in mixedCase
Variable ReentrancyGuardUpgradeable.__gap (../openzeppelin-contracts-upgrad
eable/contracts/security/ReentrancyGuardUpgradeable.sol#74) is not in mixed
Case
Function ContextUpgradeable.__Context_init() (../openzeppelin-contracts-upg
radeable/contracts/utils/ContextUpgradeable.sol#18-19) is not in mixedCase
Function ContextUpgradeable.__Context_init_unchained() (../openzeppelin-con
tracts-upgradeable/contracts/utils/ContextUpgradeable.sol#21-22) is not in
mixedCase
Variable ContextUpgradeable.__gap (../openzeppelin-contracts-upgradeable/co

50

ntracts/utils/ContextUpgradeable.sol#36) is not in mixedCase
Function ERC165Upgradeable.__ERC165_init() (../openzeppelin-contracts-upgra
deable/contracts/utils/introspection/ERC165Upgradeable.sol#24-25) is not in
mixedCase
Function ERC165Upgradeable.__ERC165_init_unchained() (../openzeppelin-contr
acts-upgradeable/contracts/utils/introspection/ERC165Upgradeable.sol#27-28)
is not in mixedCase
Variable ERC165Upgradeable.__gap (../openzeppelin-contracts-upgradeable/con
tracts/utils/introspection/ERC165Upgradeable.sol#41) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#co
nformance-to-solidity-naming-conventions

PXPGateWay (PXPGateWay.sol#15-182) does not implement functions:
- UUPSUpgradeable._authorizeUpgrade(address) (../openzeppelin-contr

acts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol#100)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
implemented-functions

UUPSUpgradeable.__gap (../openzeppelin-contracts-upgradeable/contracts/prox
y/utils/UUPSUpgradeable.sol#107) is never used in PXPGateWay (PXPGateWay.so
l#15-182)
PXPGateWay._withdrawAllowance (PXPGateWay.sol#34) is never used in PXPGateW
ay (PXPGateWay.sol#15-182)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#un
used-state-variable

initialize() should be declared external:
- PXPGateWay.initialize() (PXPGateWay.sol#47-54)

grantRole(bytes32,address) should be declared external:
- AccessControlUpgradeable.grantRole(bytes32,address) (../openzeppe

lin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#148
-150)
revokeRole(bytes32,address) should be declared external:

- AccessControlUpgradeable.revokeRole(bytes32,address) (../openzepp

51

elin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#16
1-163)
renounceRole(bytes32,address) should be declared external:

- AccessControlUpgradeable.renounceRole(bytes32,address) (../openze
ppelin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol#
179-183)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pu
blic-function-that-could-be-declared-external

Context._msgData() (../openzeppelin-contracts/contracts/utils/Context.sol#2
0-22) is never used and should be removed
ERC20._burn(address,uint256) (../openzeppelin-contracts/contracts/token/ERC
20/ERC20.sol#274-289) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#de
ad-code

Pragma version^0.8.0 (PXPToken.sol#2) necessitates a version too recent to
be trusted. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/access/Ownable.so
l#3) necessitates a version too recent to be trusted. Consider deploying wi
th 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/security/Pausable
.sol#3) necessitates a version too recent to be trusted. Consider deploying
with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/token/ERC20/ERC20
.sol#3) necessitates a version too recent to be trusted. Consider deploying
with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/token/ERC20/IERC2
0.sol#3) necessitates a version too recent to be trusted. Consider deployin
g with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/token/ERC20/exten
sions/IERC20Metadata.sol#3) necessitates a version too recent to be trusted
. Consider deploying with 0.6.12/0.7.6
Pragma version^0.8.0 (../openzeppelin-contracts/contracts/utils/Context.sol

52

#3) necessitates a version too recent to be trusted. Consider deploying wit
h 0.6.12/0.7.6
solc-0.8.6 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#in
correct-versions-of-solidity

PXPToken.constructor() (PXPToken.sol#10-12) uses literals with too many dig
its:

- _mint(msg.sender,100000000 * 10 ** decimals()) (PXPToken.sol#11)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#to
o-many-digits

pause() should be declared external:
- PXPToken.pause() (PXPToken.sol#14-16)

unpause() should be declared external:
- PXPToken.unpause() (PXPToken.sol#18-20)

renounceOwnership() should be declared external:
- Ownable.renounceOwnership() (../openzeppelin-contracts/contracts/

access/Ownable.sol#53-55)
transferOwnership(address) should be declared external:

- Ownable.transferOwnership(address) (../openzeppelin-contracts/con
tracts/access/Ownable.sol#61-64)
name() should be declared external:

- ERC20.name() (../openzeppelin-contracts/contracts/token/ERC20/ERC
20.sol#61-63)
symbol() should be declared external:

- ERC20.symbol() (../openzeppelin-contracts/contracts/token/ERC20/E
RC20.sol#69-71)
totalSupply() should be declared external:

- ERC20.totalSupply() (../openzeppelin-contracts/contracts/token/ER
C20/ERC20.sol#93-95)
balanceOf(address) should be declared external:

- ERC20.balanceOf(address) (../openzeppelin-contracts/contracts/tok
en/ERC20/ERC20.sol#100-102)

53

transfer(address,uint256) should be declared external:
- ERC20.transfer(address,uint256) (../openzeppelin-contracts/contra

cts/token/ERC20/ERC20.sol#112-115)
allowance(address,address) should be declared external:

- ERC20.allowance(address,address) (../openzeppelin-contracts/contr
acts/token/ERC20/ERC20.sol#120-122)
approve(address,uint256) should be declared external:

- ERC20.approve(address,uint256) (../openzeppelin-contracts/contrac
ts/token/ERC20/ERC20.sol#131-134)
transferFrom(address,address,uint256) should be declared external:

- ERC20.transferFrom(address,address,uint256) (../openzeppelin-cont
racts/contracts/token/ERC20/ERC20.sol#149-163)
increaseAllowance(address,uint256) should be declared external:

- ERC20.increaseAllowance(address,uint256) (../openzeppelin-contrac
ts/contracts/token/ERC20/ERC20.sol#177-180)
decreaseAllowance(address,uint256) should be declared external:

- ERC20.decreaseAllowance(address,uint256) (../openzeppelin-contrac
ts/contracts/token/ERC20/ERC20.sol#196-204)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pu
blic-function-that-could-be-declared-external
. analyzed (28 contracts with 75 detectors), 186 result(s) found

Conclusion:

Most of the vulnerabilities found by the analysis have already been addressed by the smart

contract code review.

54

6 Conclusion
In this audit, we examined the design and implementation of PXP Gateway contract and

discovered several issues of varying severity. PXP team addressed 13 issues raised in the

initial report and implemented the necessary fixes, while classifying the rest as a riskwith

low-probability of occurrence. Shellboxes’ auditors advised PXP Team to maintain a high

level of vigilance and to keep those findings in mind in order to avoid any future

complications.

55

For a Contract Audit, contact us at contact@shellboxes.com

56

mailto:contact@shellboxes.com

	Introduction
	About PXP
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Summary
	Key Findings

	Finding Details
	signController.go
	Missing amount check in signWithdraw [CRITICAL]
	Infinite Withdraw Leads To The Drain Of The Contract [CRITICAL]
	A Malicious User Can Tamper Addresses [HIGH]

	routes.go
	API Exposed To The Public [CRITICAL]
	Missing Middleware For An Inactive User [MEDIUM]

	Authorizeservice.go
	Wallet Authentication Verifed By The Private Key [HIGH]
	Public Key Can Be Tampered [HIGH]
	jwtSecret Is Hardcoded In The Authorizeservice [MEDIUM]
	HS256 Used As Signing Algorithm [LOW]
	Add The Public Address In The JWT Token [INFORMATIONAL]

	Authservice.go
	getSecretKey Returns Predicted Output [LOW]

	PXPGateWay.sol
	withdrawToken Can Be Abused [HIGH]
	Overriding Completed Transactions [MEDIUM]
	Missing Transfer Verification [MEDIUM]
	Missing Address Verification [LOW]
	Missing Value Verification [LOW]
	Floating Pragma [LOW]

	PXPToken.sol
	Approve Race Condition [LOW]
	Owner Can Renounce Ownership [LOW]
	Floating Pragma [LOW]

	Best Practices
	Variables should be initialized first

	Static Analysis (Slither)
	Conclusion

