SHELLBOX

pStake
Finance

Smart Contract Security Audit

Prepared by ShellBoxes
Aug 16", 2023 - Aug 29", 2023
Shellboxes.com

contact@shellboxes.com

https://audit.shellboxes.com
mailto:contact@shellboxes.com

Document Properties

Client Persistence
Version 10
Classification Public

Scope
Repository Commit Hash
https://github.com/persistencelne/ c558158203a185f4b0bc62740c920accabc3c580
pstake-stkETH

Re-Audit
Repository Commit Hash
https://github.com/persistencelne/ 5ea6¢c32c05386b200693bf37c507666chb5f57f15
pstake-stkETH

Contacts
COMPANY EMAIL
ShellBoxes contact@shellboxes.com

https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
https://github.com/persistenceOne/pstake-stkETH
mailto:contact@shellboxes.com

Contents

1 Introduction

1.1
1.2

About Persistence
Approach &Methodology

1.21 RiskMethodology

2 Findings Overview

2.1
2.2
2.3

Disclaimer
SUMMaArY e e
KeyFindings

3 Finding Details

SHB.1
SHB.2
SHB.3

SHB.4

SHB.5
SHB.6
SHB.7
SHB.8
SHB.9
SHB.10
SHB.M
SHB.12
SHB.13
SHB.14
SHB.15

SHB.16
SHB.17
SHB.18
SHB.19

Multiple Candidate Votes Accepted for the SameEpoch
Replay Attack on Accepted ConsensusData.
Exited Balance of Validators and Staker Rewards Permanently Locked in
the WithdrawalCredentialContract
Permanent Locking of Validator Rewards Due to Lack of depositedValida-
torsUpdate
L2 Funds Cannot Be Bridged to L1Due to Flawed Slippage Calculation . . .
Stuck MEV Rewards inthe WithdrawalCredential
Desynchronization Risk Due to Epoch-Based Data Submission
Premature Reward Allocation Due to Ignoring Queue WaitTime
Loss of User-Supplied Fees when Interacting with Optimism Messenger .
Improper Handling of Exiting Validators Allowing Last-Time Reward Claims
Desynchronization of pricePerShare BetweenLlandL2
Inequitable Reward Distribution for New Validators
Incorrect Condition Prevents Governor from Updating Commission Fees .
First Staker can Grief Others using an Inflation Attack
Innacurate rewardDebt Calculation for nodeOperators Modifying Validator

Uninitialized socketRegistry Address Leading to Potential Loss of Funds .
Lack of Blacklist Mechanism for Malicious Node Operators
Owner Can Set Critical ValuestoZero
Oracle Members Can Vote on Multiple ConsensusDatalnputs

o O o1 o1

N N N3

10
10
(V]

14

15
18
21
22
24
26
31
35
37
40
42

SHB.20 Need for Whitelisting Trusted RelayersinMEVBoost 55
SHB.21 Requirement for Node Operators to Set Fee Recipient to

Protocol-ManagedAddress 96
SHB.22 Missing Socket APl PayloadCheck 57
SHB.23 WITHDRAWAL_CREDENTIAL_BYTES32 Setter Desynchronizes Old Validators 59
SHB.24 Governor Has Full Control Over Oracle Quorum 60
SHB.25 Minimum Stake AmountBypass L 61
SHB.26 Inability to Update stkETH Exchange Rate When All Rewards Are Slashed . 64
SHB.27 Uninitialized optimismReceiver and arbitrumReceiver CanLeadtoDoS . . 66
SHB.28 Hard-coded Slippage CausesDoS 68

SHB.29 Block Number Difference Between Chains results in Desynchronized Events 69

4 Best Practices A
BP.1 Remove Unusedvariables n
BP.2 Remove Redundant Initializations with Default TypeValues 72
BP.3 RemoveTautological Statements 72
BP.4 Unchanged Variables Should Be Declaredas Constants 73
BP.5 CorrectMisleadingComments 14
BP.6 Optimize For Loop Counterincrement 14
BP.7 Remove Unused Modifier 75

9 Tests 76
5.1 Ll-contracts 76
5.2 L2-contracts 78

6 Conclusion 79

7 ScopeFiles 80
1.1 Audit . . . 80
7.2 Re-Audit 81

8 Disclaimer 83

1 Introduction

Persistence engaged ShellBoxes to conduct a security assessment on the pStake
Finance beginning on Aug 16", 2023 and ending Aug 29", 2023. In this report, we detail our
methodical approach to evaluate potential security issues associated with the
implementation of smart contracts, by exposing possible semantic discrepancies
between the smart contract code and design document, and by recommending additional
ideas to optimize the existing code. Our findings indicate that the current version of smart
contracts can still be enhanced further due to the presence of many security and
performance concerns.
This document summarizes the findings of our audit.

1.1 About Persistence

pSTAKE is a liquid staking protocol unlocking the liquidity of staked assets. Stakers of PoS
tokens can now stake their assets while maintaining the liquidity of these assets. On
staking with pSTAKE, users earn staking rewards and also receive staked representative
tokens (stkASSETs) which can be used in DeFi to generate additional yield (yield on top of
staking rewards).

Issuer Persistence

Website https://pstake.finance/

Type Solidity Smart Contract

Documentation pSTAKE for Ethereum (stkETH) on Layer 2s
Audit Method Whitebox

1.2 Approach & Methodology

ShellBoxes used a combination of manual and automated security testing to achieve a
balance between efficiency, timeliness, practicability, and correctness within the audit’s
scope. While manual testing is advised for identifying problems in logic, procedure, and

5

https://pstake.finance/
https://docs.google.com/document/d/1kUwv63GfJbgE4v8qMLiW6rumZDASCicB7QitpyGe-aY/edit#heading=h.mlbhgdlbp83t

implementation, automated testing techniques help to expand the coverage of smart
contracts and can quickly detect code that does not comply with security best practices.

1.21 Risk Methodology

Vulnerabilities or bugs identified by ShellBoxes are ranked using a risk assessment tech-
nique that considers both the LIKELIHOOD and IMPACT of a security incident. This frame-
work is effective at conveying the features and consequences of technological vulnerabili-
ties.

Its quantitative paradigm enables repeatable and precise measurement, while also re-
vealing the underlying susceptibility characteristics that were used to calculate the Risk
scores. Arisk level will be assigned to each vulnerability on a scale of 5 to 1, with 5 indicat-
ing the greatest possibility or impact.

— Likelihood quantifies the probability of a certain vulnerability being discovered and
exploited in the untamed.

— Impact quantifies the technical and economic costs of a successful attack.

— Severity indicates the risk’s overall criticality.

Probability and impact are classified into three categories: H, M, and L, which corre-
spond to high, medium, and low, respectively. Severity is determined by probability and im-
pact and is categorized into four levels, namely Critical, High, Medium, and Low.

= High Critical
2 Medium
£
— Low
High Medium Low
Likelihood

2 Findings Overview

2.1 Disclaimer

Please note that our review and subsequent findings related to the smart contracts do not
cover the Socket Bridge Aggregator. The functionality, security, and integrity of the Socket
Bridge Aggregator are outside the scope of this audit. The implementation of the bridging
solution can have a significantimpact on the security of the protocol.

Furthermore, within the smart contract system, there exists a role designated as the
Governor, This role possesses significant permissions, including the ability to influence
the oracle that submits consensus data on-chain. For the purposes of this audit, we have
treated the governor role as a trusted entity. However, users and stakeholders should be
aware of the extensive capabilities and influence this role holds within the system.

2.2 Summary

The following is a synopsis of our conclusions from our analysis of the pStake Finance im-
plementation. During the first part of our audit, we examine the smart contract source code
and run the codebase via a static code analyzer. The objective here is to find known coding
problems statically and then manually check (reject or confirm) issues highlighted by the
tool. Additionally, we check business logics, system processes, and DeFi-related compo-
nents manually to identify potential hazards and/or defects.

2.3 KeyFindings

While the smart contracts exhibit a structured approach, our review identified several
areas of concern that need to be addressed to ensure the robustness and security of the
system. The issues include ¢ critical-severity, 7 high-severity, 10 medium-severity, 5
low-severity, | informational-severity vulnerabilities.

Vulnerabilities Severity Status
SHB.1. Multiple Candidate Votes Accepted for the CRITICAL Fixed
Same Epoch

SHB.2. Replay Attack on Accepted ConsensusData CRITICAL Fixed

SHB.3. Exited Balance of Validators and Staker Re- CRITICAL Acknowledged
wards Permanently Locked in the WithdrawalCreden-
tial Contract

SHB.4. Permanent Locking of Validator Rewards Due CRITICAL Fixed
to Lack of depositedValidators Update

SHB.5. L2 Funds Cannot Be Bridged to L1 Due to CRITICAL Fixed

Flawed Slippage Calculation

SHB.6. Stuck MEV Rewards in the WithdrawalCreden- CRITICAL Acknowledged
tial

SHB.7. Desynchronization Risk Due to Epoch-Based Acknowledged
Data Submission

SHB.8. Premature Reward Allocation Due to Ignoring Acknowledged
Queue Wait Time

SHB.9. Loss of User-Supplied Fees when Interacting Fixed
with Optimism Messenger

SHB.10. Improper Handling of Exiting Validators Al- Fixed

lowing Last-Time Reward Claims

SHB.11. Desynchronization of pricePerShare Between Acknowledged
L1and L2

SHB.12. Inequitable Reward Distribution for New Val- Acknowledged
idators

SHB.13. Incorrect Condition Prevents Governor from Fixed
Updating Commission Fees

SHB.14. First Staker can Grief Others using anInflation Fixed
Attack

SHB.15. Innacurate rewardDebt Calculation for node- Fixed

Operators Modifying Validator Count

SHB.16. Uninitialized socketRegistry Address Leading
to Potential Loss of Funds

SHB.17. Lack of Blacklist Mechanism for Malicious
Node Operators

Fixed

SHB.18. Owner Can Set Critical Values to Zero

Acknowledged

SHB.19. Oracle Members Can Vote on Multiple Con-
sensusData Inputs

Fixed

SHB.20. Need for Whitelisting Trusted Relayersin MEV
Boost

Acknowledged

SHB.21. Requirement for Node Operators to Set Fee
Recipient to Protocol-Managed Address

Acknowledged

SHB.22. Missing Socket APl Payload Check

Acknowledged

SHB.23. WITHDRAWAL_CREDENTIAL_BYTES32 Setter
Desynchronizes Old Validators

Acknowledged

SHB.24. Governor Has Full Control Over Oracle Quo-

rum

Acknowledged

SHB.25. Minimum Stake Amount Bypass

Acknowledged

SHB.26. Inability to Update stkETH Exchange Rate
When All Rewards Are Slashed

Fixed

SHB.27. Uninitialized optimismReceiver and arbi-
trumReceiver Can Lead to DoS

Fixed

SHB.28. Hard-coded Slippage Causes DoS

Fixed

SHB.29. Block Number Difference Between Chainsre-
sultsin Desynchronized Events

Acknowledged

INFORMATIONAL | Acknowledged

3 Finding Details

SHB.1 Multiple Candidate Votes Accepted for the Same Epoch

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed - Impact: 3

The pushData function in the contract allows the execution of different ConsensusData in-
puts for the same transaction epoch (n x 200 epochs). The contract assumes the Consen-
susData to be correct every time the number of votes is equal to or exceeds the quorum.
This design flaw can lead to the acceptance of two or more different ConsensusData inputs
for the same transaction epoch.

Consider a scenario where the quorum is initialized to 2 (as it is in the contract now) and
there are 4 oracle members. If two members agree on a particular input and the other two
members agree on a different input, both inputs can be executed (for 6 oracle members we
willhave 3acceptedinputs...). This can lead to anincorrect state in the contract, as the con-
tract would accept both inputs as valid even though they might be contradictory.

SHB.1.1: Oracle.sol

21 function pushData(

252 ConsensusData memory _consensusData

23) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.
— getCurrentEpoch()) {

255 revert VotedEarly();

10

256

257

258

259

260

261

262

263

264

265

}
bytes32 candidateld = keccak256(abi.encode(_consensusData,
— beaconData.getCurrentEpoch()));
bytes32 voteld = keccak256(abi.encode(msg.sender, candidateld));
if (submittedVotes[voteId]) {
revert AlreadyVoted(msg.sender);
}
submittedVotes[voteld] = true;
uint256 candidateNewVotes = candidates[candidateId] + 1;
candidates[candidateId] = candidateNewVotes;

if (candidateNewVotes >= quorum) {

- Implementamechanismtoensurethatonlyonecandidate dataisacceptedforagiven

transaction epoch

- Useapercentage asaquoruminstead of relying on staticnumber of votes for accept-

ing the input, the datainput given by the oracle should only be accepted ifitis voted on
by the majority of the members (more than 50% as aminimum so we can only have one
accepted data per epoch).

The team resolved the issue, by reverting with VotedEarly in the pushData whenever the

current epoch was already voted on.

SHB.1.2: Oracle.sol

244

245

246

247

248

249

function pushData(
ConsensusData memory _consensusData
) external override whenNotPaused onlyOracle {
if (_executedConsensusData[keccak256 (abi.encode(consensusData))])
— revert DuplicateDataSubmitted() ;
// revert if voted for completed Epoch or if voted early
if (beaconData.getCurrentEpoch() == lastCompletedEpoch

1

250 beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.
— getCurrentEpoch()) revert VotedEarly();

SHB.2 Replay Attack on Accepted ConsensusData

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed « Impact: 3

The pushData function in the contract accepts and processes ConsensusData if it receives
votes greater than or equal to the "quorum”. However, there is no mechanism in place to
ensure that the same ConsensusDataisn't processed multiple times. This oversight allows
forapotentialreplayattackwherethe same ConsensusDatacanbe submitted and accepted
multiple times, leading to incorrect state updates.

An oracle submits a specific ConsensusData that garners more than the "quorum” votes,
leading the contract to update its state based on this data. Another oracle, either
maliciously or inadvertently, submits the same ConsensusData again. Since there’s no
check to prevent the same data from being processed multiple times, the contract will
again update its state based on the same data, leading to incorrect or duplicated state
changes in the same transaction epoch.

SHB.2.1: Oracle.sol

21 function pushData(
252 ConsensusData memory _consensusData

253) external override whenNotPaused onlyOracle {

12

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.
— getCurrentEpoch()) {

255 revert VotedEarly();
256 }
257 bytes32 candidateld = keccak256(abi.encode(_consensusData,

— beaconData.getCurrentEpoch()));

258 bytes32 voteld = keccak256(abi.encode(msg.sender, candidateld));
259 if (submittedVotes[voteId]) {

260 revert AlreadyVoted(msg.sender);

21 }

262 submittedVotes[voteId] = true;

263 uint256 candidateNewVotes = candidates[candidateId] + 1;

264 candidates[candidateId] = candidateNewVotes;

265 if (candidateNewVotes >= quorum) {

Before processingany ConsensusData, consider checking against the stored entriesto en-
sure it has not been processed before onthe same tx epoch.

The teamresolved the issue by adding a mapping called _executedConsensusData to track
the executed concensus data and prevent it from being replayed.

SHB.2.2: Oracle.sol

24 function pushData(

245 ConsensusData memory _consensusData

us) external override whenNotPaused onlyOracle {

247 if (_executedConsensusData[keccak256 (abi.encode(consensusData))])

— revert DuplicateDataSubmitted();

SHB.2.3: Oracle.sol

s _executedConsensusData[keccak256(abi.encode(_consensusData))] = true;

13

SHB.3 Exited Balance of Validators and Staker Rewards

Permanently Locked in the WithdrawalCredential

Contract
- Severity: CRITICAL - Likelihood: 3
- Status: Acknowledged - Impact: 3

The setRewardsSlashedAmount function in the contract is designed to set rewards,
slashed amounts, and exit balances. However, there’s an oversight in the handling of the
exited balance of validators. When a validator exits, their balance remains locked in the
WithdrawalCredential contract andisn’t transferred back to the Issuer contract. The same

goes for the accumulated staker rewards, the contract only handles validators and
treasury rewards.

Consider a scenario where multiple validators exit over time. Their combined exited
balances accumulate in the WithdrawalCredential contract. This accumulated balance
remains idle and isnt utilized to generate rewards or for any other productive purpose.

Over time, this can lead to a significant amount of the users’ funds being locked without any
utility.

SHB.3.1: WithdrawalCredential.sol

9% function setRewardsSlashedAmount (

95 uint256 _rewards,
% uint256 _slashed_amount,
97 uint256 exit balance

9¢) external override onlyOracle {

14

99 newRewards = _rewards;

100 totalRewards += _rewards;

101 totalSlashedAmount = slashed amount;
102 exitBalance += exit_balance;

103 }

Modify the setRewardsSlashedAmount function to transfer the exited balance back to the
Issuer contract upon a validator’s exit.

The team acknowledged the issue, stating that proper fund movement will be implemented
with withdrawal feature (unstaking) as the exit balance will majorly serve the purpose of
filling the withdrawal requests or provide liquidity to different validator for continuous re-
ward generation.

SHB.4 Permanent Locking of Validator Rewards Due to Lack
of depositedValidators Update

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed « Impact: 3

The updateRewardPerValidator function in the contract is designed to update the rewards
for validators. However, there’s a critical oversight related to the handling of exited val-
idators. The contract fails to update the depositedValidators in the Issuer when a validator
exits. As a result, the contract still considers exited validators when calculating rewards.
Since exited validators cannot claim these rewards, an important portion of each accumu-
lated reward becomes permanently locked in the contract.

15

Consider a situation where a significant number of validators exit over a period. Due to
the lack of updates to depositedValidators, the contract continues to allocate rewards con-
sidering these exited validators. Over time, a substantial portion of the rewards becomes
locked and unclaimable. As more validators exit, the percentage of lost rewards for each
allocation increases, leading to a significant loss of funds over time.

SHB.4.1: Oracle.sol

s function validatorExited(ExitedValidator[] memory _validators) internal

< returns (uint256) {

am bytes[] memory pub_key = new bytes[](_validators.length);
312 uint256 exitValidatorBalance = 0;

313 for (uint i; i < _validators.length;) {

314 pub_key[i] = _validators[i].publicKey;

315 exitValidatorBalance += _validators[i].amount;

316 unchecked {

317 ++13 ;

a8 }

219 }

320 IKeysManager (core () .keysManager ()) .exitedValidator (pub_key) ;
321 return exitValidatorBalance;

2}

SHB.4.2: KeysManager.sol

s function exitedValidator(bytes[] memory publicKeys) external override {
82 require(msg.sender == core().oracle(), "KeysManager: Only oracle can

— activate");

83 for (uint256 i; i < publicKeys.length;) {

84 Validator storage validator = _validators[publicKeys[i]];
85 require(

86 validator.state == State.DEPOSITED,

87 "KeysManager: Validator not in valid state"

[

88)R

89 // node operator active validator count decreases

90 nodeOperatorValidatorCount [validator.nodeOperator] -= 1;
9 validator.state = State.EXITED;

92 unchecked {

93 ++7 ;

% }

95 }

% emit ExitValidator(publicKeys);

o}

SHB.4.3: StakingPool.sol

¢ function updateRewardPerValidator(uint256 newReward) public override {

68 IERC20Upgradeable (address(stkEth)) .safeTransferFrom(_msgSender(),
< address(this), newReward);

6 accRewardPerValidator += (newReward * 1el2) / IIssuer(core.issuer())
— .depositedValidators();

o }

Consider updating the depositedValidators count in the Issuer whenever a validator exits.

Theteamresolvedtheissue, by updating the depositedValidators count using the validator-
sExited function from the Issuer contract.

SHB.4.4: Oracle.sol

s function validatorExited(ExitedValidator[] memory _validators) internal

< returns (uint256) {

306 bytes[] memory pubKey = new bytes[](_validators.length);
307 uint256 exitValidatorBalance;

308 for (uint i; i < _validators.length;) {

309 pubKey[i] = _validators[i].publicKey;

17

310 exitValidatorBalance += _validators[i].amount;

an unchecked {

31 ++1;

JE }

N }

315 IKeysManager (core () .keysManager()) .exitedValidator (pubKey) ;

316 IIssuer(core().issuer()).validatorsExited(_validators.length);
31 return exitValidatorBalance;

w }

SHB.4.5: Oracle.sol

s function validatorsExited(uint256 _numValidatorExited) external

< whenNotPaused {

307 if (msg.sender != core.oracle()) revert UnauthorizedCall (msg.sender);
308 depositedValidators —-= _numValidatorExited;
309 }

SHB.5 L2 Funds Cannot Be Bridged to L1 Due to Flawed Slip-

page Calculation

- Severity: CRITICAL - Likelihood: 3

- Status: Fixed « Impact: 3

The smart contract IssuerUpgradable contains a function named getDepositL2 that serves
as the entry point for receiving ETH from L2 stakers. This function employs a slippage con-
trolmechanism designedto accommodate delaysinthe bridge process. However, thereisa
critical oversightin the calculation of the L2 exchange rate. Theissue arises from the omis-
sion of a necessary adjustment for the multiplication by 1e18 in the pricePerShare, leading
to incorrect slippage calculations resulting in reverted deposits, even for exchange rates

18

that are not stale. so basically meaning that the transactionto getDepositL2 will revert and
ETH will remain stuckin L2.

1. Initially, the exchange rate between stkETH and ETH is 1:1.
pricePerShare =1e18

2. Given the 1:1 exchange rate, msg.value / _stkEthMinted will be approximately 1 due to
the exchange rate.

3. The slippage checkin getDepositL2 involves:

SHB.5.1: IssuerUpgradable.sol

exchangeRate - exchangeRate / 100 > (msg.value / _stkEthMinted)
(msg.value / _stkEthMinted) > exchangeRate + exchangeRate / 100

4. The checkdoesnotaccountforthe pricePerShare beinginflated by a multiplication by
1e18.

5. Consequently, the slippage check is erroneous and consistently reverts deposits,
even when the exchange rate is not stale.

Thisresultsin aninability to bridge L2 ETH to L1, rendering the L2 ETH stuck.

SHB.5.2: IssuerUpgradable.sol

21 function getDepositL2(
262 uint256 _stkEthMinted,
263 uint256 _sourceChainId

24) external payable onlySocketReceiver {

265 // accept 1% error in exchange rate due to delay in bridging

266 uint256 exchangeRate = core.stkEth() .pricePerShare();

27 if (

28 exchangeRate - exchangeRate / 100 > (msg.value / _stkEthMinted)
269 (msg.value / _stkEthMinted) > exchangeRate + exchangeRate / 100

19

270) revert InvalidExchangeRateReceived();

SHB.5.3: StkEth.sol

w2 function pricePerShare() public view override returns (uint256) {

103 return IOracle(core().oracle()) .pricePerShare();

104 }

SHB.5.4: Oracle.sol

w2 function changeCValue(int256 calculatedRewards) internal whenNotPaused {
183 if (calculatedRewards > 0) {
184 uint256 valEthShare = (valCommission * uint256(
— calculatedRewards)) / BASIS POINT;
185 uint256 protocolEthShare = (pStakeCommission * uint256(
— calculatedRewards)) /

186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core() .issuer());
188 pricePerShare =

189 ((withdrawals.getTotalRewards() +

190 issuer.ethStaked() -

191 withdrawals.getTotalSlashedAmount () -
192 valEthShare -

193 protocolEthShare) * 1e18) /

19 issuer.stkEthMinted();

195 }

19 }

Consider comparing the exchangeRate with msg.value *1e18 / _stkEthMinted.

The teamresolved the issue by adding a 1e18 multiplication to balance the ratio with the ex-
change rate.

20

SHB.5.5: IssuerUpgradable.sol

25 function getDepositL2(

266

267

268

269

270

27

272

273

274

uint256 _stkEthMinted,

uint256 _sourceChainId

) external payable onlySocketReceiver {

// accept 17, error in exchange rate due to delay in bridging
uint256 exchangeRate = core.stkEth() .pricePerShare();
¢
exchangeRate - exchangeRate / 100 > (msg.value * 1el8 /
— _stkEthMinted)
(msg.value * 1e18 / _stkEthMinted) > exchangeRate + exchangeRate
— / 100

) revert InvalidExchangeRateReceived();

SHB.6 Stuck MEV Rewardsinthe WithdrawalCredential

. Severity: CRITICAL - Likelihood: 3

- Status: Acknowledged - Impact: 3

The contract is designed to receive MEV rewards (when node operators run mev boost) in

Ether. However, once the Etherisreceived and added to the mevRewards variable, there is

no mechanism in place to withdraw or utilize these funds. This design flaw can resultin a

significantamount of Ether being permanently locked in the contract, rendering theminac-

cessible and unusable.

SHB.6.1: WithdrawalCredential.sol

72

/// @dev This function is responsible for receiving eth MEV rewards

21

13 receive() external payable {
74 emit MEVReceived(msg.value);

75 mevRewards += msg.value;

Implement a function that allows the withdrawal or reallocation of the MEV rewards. This
functionshould have appropriate access controlsto ensure only authorized entities can ex-
ecute it.

The team acknowledged the issue, stating that the feature to withdraw MEV rewards will be
implemented with stkETH withdrawal(unstaking).

SHB.7 Desynchronization Risk Due to Epoch-Based Data

Submission
- Severity: [HIGH - Likelihood: 2
- Status: Acknowledged - Impact:3

The pushData functionin the contract is designed to accept ConsensusData from off-chain
oracles based on a voting system. The data submission is restricted to every 200th epoch.
However, there’s a potentialdesynchronizationissue if oracle members do not consistently
submit data every 200 epochs. This can lead to scenarios where different oracles submit
data covering different epoch ranges, resulting in a lack of consensus even if the data from
eachoracleis correct.

Consider a scenario with four oracle members over a span of 400 epochs (quorum = 2):

22

- Oracle A and B submit ConsensusData for the first 200 epochs then another one for
the other 200 epochs.

- Oracle Cand D submit ConsensusData covering the entire 400 epochs.

In this situation, even though both oracles’ groups might be providing accurate data, they
won't reach a consensus due to the overlapping epoch ranges. If there are more oracle
members, this desynchronization can lead to various issues, such as:

- Failuretoreach consensuson correct values.

- Potential state corruption if a ConsensusData for a 200 epoch range is accepted,
followed by another ConsensusData from a delayed oracle covering a larger epoch
range (e.g., n*200 epochs), effectively replaying data from previous epochs.

SHB.7.1: Oracle.sol

251 function pushData(
252 ConsensusData memory _consensusData

253) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.
< getCurrentEpoch()) {

255 revert VotedEarly();

256 }

SHB.7.2: BeaconData.sol

2 function getNextTxEpoch(

2 Values storage beaconValues,

2 uint64 lastEpoch

22) internal view returns (uint64) {

2 if ((beaconValues.getCurrentEpoch() - lastEpoch) 7 beaconValues.
< epochsPerTimePeriod == 0) {

25 return beaconValues.getCurrentEpoch();

2% } else {

7 uint64 n = (beaconValues.getCurrentEpoch() - lastEpoch) /

23

28 beaconValues.epochsPerTimePeriod;

29 return lastEpoch + ((n + 1) * beaconValues.epochsPerTimePeriod);
30 }

2}

32

13 function getCurrentEpoch(Values storage beaconValues) internal view

< returns (uint64) {

34 return

35 uint64(

3 (uint64(block.timestamp) - beaconValues.genesisTime) /

37 (beaconValues.slotsPerEpoch * beaconValues.secondsPerSlot)
3 s

» }

Consider adding more information in the ConsensusData about epoch range associated to
it. This information should be taken into consideration to assure reaching consensus ,and
to avoid replaying previously accounted data.

The team acknowledged the issue, stating that the team will be running the off chain oracle
initially and making sure to send correct data. Also, they are planning to implement epoch
range in consensus data to prevent desynchronisation risk in the next update with With-
drawal feature.

SHB.8 Premature Reward Allocation Due to Ignoring Queue

Wait Time
- Severity: [HIGH - Likelihood: 3
- Status: Acknowledged - Impact: 2

24

Ethereum’s proof of stake (PoS) consensus mechanism uses enter and exit queues to man-
age validators waiting to begin staking or to unstake, ensuring the stability of the network.
The network has arate limit, known as churn, on how many validators can be processed per
epoch. If the number of validators trying to enter or exit exceeds this limit, they are placed
in the respective queue. However, the contract’s depositToEth2 function in the Issuer con-
tractimmediately accounts a validator as deposited after staking in the beacon chain, with-
out considering the queue wait time. Note that the queue wait time changes over time (cur-
rently at 23.01days), the queue times can be checked here: Validator Queue.

A validator stakes and is instantly recognized as deposited by the Issuer contract (Eligi-
ble for protocol rewards). This premature recognition allows the validator to start earning
rewards even before they begin attesting to and proposing blocks in the consensus layer
(generating rewards for the protocol). As aresult, validators can earn rewards without ac-
tively participating in the consensus process, undermining the incentive structure of the
PoS mechanism.

SHB.8.1: IssuerUpgradable.sol

20 function depositToEth2(bytes calldata publicKey) external whenNotPaused

— {
281 require(
282 address(this) .balance >= VALIDATOR_DEPOSIT + VERIFICATION_DEPOSIT
—
283 "Issuer: Not enough ether deposited"
284);
285 IKeysManager.Validator memory validator = IKeysManager (core.

— keysManager()) .validators(
286 publicKey
287)

288

25

https://www.validatorqueue.com

289 withdrawalverificationDeposit(validator.nodeOperator) ;

290

291 IKeysManager (core.keysManager ()) .depositValidator (publicKey) ;
292

293 depositedValidators = depositedValidators + 1;

294 DEPOSIT CONTRACT.deposit{ value: VALIDATOR_DEPOSIT }(

295 publicKey,

296 abi.encodePacked(core.withdrawalCredential()),

297 validator.signature,

298 validator.deposit_root

299);

30}

Implement checks to ensure that validators only start earning rewards after they begin at-
testingtoand proposingblocks. Thiscanbe achievedbyrelyingonthe oracle toprovide data
thatallowsthe contractto switch avalidatorfromdepositedtoeligibletorewards after they
start proposing and attesting to blocks.

The team acknowledged the issue, stating that they will be implementing the fix with the
withdrawal feature by introducing additional info to pushData function through an offchain
oracle, mark Deposited and update the required state changes with proper checks.

SHB.9 LossofUser-Supplied Fees when Interacting with Op-

timism Messenger

- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact: 3

26

The Issuer contract on Layer 1 contains functions such as mintL2, transferToL2, and
mintWethL2, which are responsible for minting or transferring stkETH to Layer 2 (e.g.,
Arbitrum or Optimism). In the case of Arbitrum, the _callValue is used for retry-able L2
message, but a critical issue arises when interacting with Optimism. Specifically, when
calling mintstkETHL2 within OptimismMessenger or changeCValuelL2 within Oracle, the
user-supplied value goes unused as the first 1.92 million gas on L2 OP is free. Therefore,
the sent value becomes trappedin the contract without a method to retrieve it. This results
in a loss of user-supplied fees when interacting with OptimismMessenger.

SHB.9.1: IssuerUpgradable.sol

s function mintL2(

165 uint256 _messengerld,

166 uint256 _callValue,

167 address _receiverAddress,

168 bytes memory _payload

))

170 external

m payable

172 whenNotPaused

173 minimumStakeAmount (msg.value)

174 onlyExistingMessenger (_messengerId)

5 {

176 uint256 ethToStake = msg.value - _callValue;

m emit Stake(msg.sender, ethToStake, block.timestamp);

178 uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().
— pricePerShare();

179 stkEthMinted = stkEthMinted + stkEthToMint;

180 ethStaked = ethStaked + ethToStake;

181 IL1Messenger (messengers[messengerId] .messenger) .mintstkETHL2{

— value: _callValue }(

182 _receiverAddress,

27

183

184

185

stkEthToMint,
_payload
)3

SHB.9.2: IssuerUpgradable.sol

240

241

242

243

244

245

246

247

248

249

250

251

252

253

function transferToL2(

uint256 _messengerld,
uint256 _amount,
address _receiverAddress,

bytes memory _payload

— {

uint256 amountTotal = core.stkEth() .balance0Of (msg.sender);

if (amountTotal >= _amount) {

core.stkEth() .burn(msg.sender, _amount);

) external payable whenNotPaused onlyExistingMessenger(_messengerId)

IL1Messenger (messengers[messengerId] .messenger) .mintstkETHL2

— { value: msg.value }(
_receiverAddress,
_amount,
_payload

)

SHB.9.3: IssuerUpgradable.sol

207

208

209

210

n

212

yAK]

214

215

216

217

function mintWethL2(

uint256 _messengerld,
uint256 _amount,
address _receiverAddress,

bytes memory _payload

external

payable

whenNotPaused
minimumStakeAmount (_amount)

onlyExistingMessenger (_messengerId)

28

218

219

220

221

222

223

224

225

226

227

228

229

230

231

// Transfer WETH from user to issuer
IERC20Upgradeable (WETH) .safeTransferFrom(msg.sender, address(this
—), _amount);
// withdraw ETH by buring WETH token
IWETH(WETH) .withdraw(_amount) ;
emit Stake(msg.sender, _amount, block.timestamp);
ethStaked += _amount;
uint256 stkEthToMint = (_amount * 1e18) / core.stkEth().
— pricePerShare();
stkEthMinted += stkEthToMint;
IL1Messenger (messengers[messengerId] .messenger) .mintstkETHL2{
— value: msg.value }(
_receiverAddress,
stkEthToMint,
_payload
)

SHB.9.4: Oracle.sol

m function changeCValueL2(

212

yAK]

214

215

216

217

218

219

220

221

222

uint256 _messengerld,

bytes memory _payload

) external payable whenNotPaused {

IIssuer issuer = IIssuer(core().issuer());

(bool messengerStatus, address messenger) = issuer.getMessenger (
— _messengerld);

if (!messengerStatus (messenger == address(0))) revert
— InvalidMessenger();

IL1Messenger (messenger) . changeCValuelL2{ value: msg.value }(
msg.sender,
pricePerShare,
_payload

)

SHB.9.5: OptimismMessenger.sol

29

38

39

40

function _sendMessage(bytes memory _message) internal {

optimismMessenger.sendMessage (optimismReceiver, _message, 12gas);

}

SHB.9.6: OptimismMessenger.sol

42

43

44

48

49

50

51

52

53

function changeCValueL2(
address,
uint256 cValue,
bytes memory
) external payable override onlyOracle whenNotPaused {
bytes memory message = abi.encodeWithSelector(
IL2MessageContract.changeCValue.selector,
cValue
)
_sendMessage (message) ;

emit CValueChangedL2(block.number, cValue, destinationChainID);

SHB.9.7: OptimismMessenger.sol

55

61

62

63

64

65

66

67

function mintstkETHL2(
address user,
uint256 amount,
bytes memory
) external payable override onlyIssuer whenNotPaused {
bytes memory message = abi.encodeWithSelector(
IL2MessageContract.mintstkETH. selector,
user,
amount
)
_sendMessage (message) ;

emit MintStkETHL2(msg.sender, user, amount, destinationChainID);

30

Consider refunding the call value to the user when he chooses the OptimismMessenger.

The team resolved the issue by adding a call to refund the user when interacting with the
OptimismMessenger.

SHB.9.8: OptimismMessenger.sol

i if (msg.value > 0){

39 (bool success,) = user.call{value: msg.value}("");
40 if (!success) revert RefundFailed();
a

SHB.9.9: OptimismMessenger.sol

1 if (msg.value > 0){

73 (bool success,) = user.call{value: msg.value}("");
7 if (!success) revert RefundFailed();
75 }

SHB.10 Improper Handling of Exiting Validators Allowing
Last-Time Reward Claims

- Severity: [HIGH - Likelihood: 3

- Status: Fixed « Impact: 2

The function exitedValidator within the KeysManager contract successfully marks
validators as exited when they cease staking, either voluntarily or due to slashing. This
process includes a necessary decrement of the number of validators for a given
nodeOperator. However, the flaw here is that the function does not trigger the

31

claimAndUpdateRewardDebt function in the StakingPool contract. Consequently, a

nodeOperator can call claimAndUpdateRewardDebt and still get rewards for the reported

exited validator, enabling them to collect rewards meant for that validator. Essentially, this

allows a last-minute reward claim by a nodeOperator after their validator has been

marked as exited.

. Avalidator under the control of a nodeOperatoris reported as exited through the ex-

itedValidator function.

. The function in KeysManager decrements the nodeOperatorValidatorCount, reflect-

ing the exited validator.

. Despite the validator being reported as exited, the nodeOperator identifies the ab-

sence of a call to claimAndUpdateRewardDebt.

. The nodeOperator exploits this gap by calling claimAndUpdateRewardDebt for the

exited validator, subsequently accumulating rewards originally designated for
active validators.

. This unauthorized accumulation of rewards results in an unfair distribution of

rewards and undermines the integrity of the reward system.

. In a scenario with 20 validators and 10000 wei in fees, each validator should receive

500 wei as their share of the fees.

. Although nodeOperator A has no active validators, they can still claim 500 wei in re-

wards, essentially gaining rewards one last time for their exited validator.

SHB.10.1: StakingPool.sol

7 function claimAndUpdateRewardDebt(address usr) external override {

75

76

77

UserInfo storage user = userInfos[usr];

uint256 userValidators = IKeysManager (core.keysManager()).

— nodeOperatorValidatorCount (usr) ;

kY.

78

79

80

1l

82

83

84

85

86

87

88

uint256 pending = ((accRewardPerValidator * user.amount) / 1lel2)

> - user.rewardDebt;

if (pending > 0) {
IERC20Upgradeable (address (stkEth)) .safeTransfer(usr, pending)
—

emit RewardRedeemed(pending, usr);

user.rewardDebt = (accRewardPerValidator * userValidators) / 1lel?2
= 3

user.amount = userValidators;

SHB.10.2: KeysManager.sol

s function exitedValidator(bytes[] memory publicKeys) external override {

82

83

84

85

86

87

88

89

90

require(msg.sender == core().oracle(), "KeysManager: Only oracle
— can activate");
for (uint256 i; i < publicKeys.length;) {
Validator storage validator = _validators[publicKeys[il];
require (
validator.state == State.DEPOSITED,
"KeysManager: Validator not in valid state"
¥
// node operator active validator count decreases

nodeOperatorValidatorCount [validator.nodeOperator] -= 1;

Consider calling claimAndUpdateRewardDebt after decreasing the validator count for the

nodeOperator.

33

The team resolved the issue by adding a call to the claimAndUpdateRewardDebt function

after updating the validator count.

SHB.10.3: KeysManager.sol

% function exitedValidator(bytes[] memory publicKeys) external override {

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

require(msg.sender == core().oracle(), "KeysManager: Only oracle can
—» activate");
for (uint256 i; i < publicKeys.length;) {
Validator storage validator = _validators[publicKeys[il];
require(
validator.state == State.DEPOSITED,
"KeysManager: Validator not in valid state"
¥
// node operator active validator count decreases
nodeOperatorValidatorCount [validator.nodeOperator] -= 1;
IStakingPool(core() .validatorPool()) .claimAndUpdateRewardDebt (
— validator.nodeOperator) ;
validator.state = State.EXITED;
unchecked {
++1;

}
emit ExitValidator(publicKeys) ;

34

SHB.11 Desynchronization of pricePerShare Between L1 and

L2
- Severity: [HIGH - Likelihood: 3
- Status: Acknowledged - Impact: 2

After reaching consensus on an oracle report, the contract updates the pricePerShare of
stkETH on L1 based on accumulated rewards and slashing penalties using the changeC-
Value function. However, this updated price is not automatically reflected on Layer 2 (L2).
The synchronization only occurs when someone explicitly calls the changeCValuel2 func-
tion. This leads to a significant desynchronization in the pricePerShare between L1and L2,
allowing stkETH to be minted at inconsistent prices across layers.

An actor observes the desynchronization between L1and L2 pricePerShare. They exploit
this discrepancy by minting stkETH on the layer where the price is more favorable, poten-
tially leading to arbitrage opportunities or undue advantage.

SHB.11.1: Oracle.sol

w2 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

184 uint256 valEthShare = (valCommission * uint256(calculatedRewards)
<) / BASIS_POINT;

185 uint256 protocolEthShare = (pStakeCommission * uint256(

< calculatedRewards)) /
186 BASIS_POINT;

187 IIssuer issuer = IIssuer(core().issuer());

35

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount () -
valEthShare -
protocolEthShare) * 1el18) /
issuer.stkEthMinted () ;
withdrawals.distributeRewards(protocolEthShare, valEthShare,
— pricePerShare) ;
emit RewardRateChanged(pricePerShare) ;
} else if (calculatedRewards < 0) {
IIssuer issuer = IIssuer(core().issuer());
pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount()) * 1el8) /
issuer.stkEthMinted();
emit RewardRateChanged(pricePerShare) ;

SHB.11.2: Oracle.sol

am function changeCValueL2(

212

yAK]

214

215

216

217

218

219

220

uint256 _messengerld,
bytes memory _payload
) external payable whenNotPaused {

IIssuer issuer = IIssuer(core().issuer());

(bool messengerStatus, address messenger) = issuer.getMessenger(
— _messengerld);

if (!messengerStatus (messenger == address(0))) revert
— InvalidMessenger();

IL1Messenger (messenger) . changeCValuelL2{ value: msg.value }(
msg.sender,

pricePerShare,

36

221 _payload

222);

223 }

Consider calling the changeCValuel2 for each chain whenever the pricePerShare changes
to keep it synchronized between the chains.

The team acknowledged the risk, stating that they will call the changeCValueL2 from an off
chain oracle after pushData gets executed as different payloads are required for different
messengers. Also, for long term they will be using an aggregator service for cross chain
communication and update the cValuelL2 inside pushData itself. .

SHB.12 Inequitable Reward Distribution for New Validators

- Severity: [HIGH - Likelihood: 3

- Status: Acknowledged - Impact: 2

Within the KeysManager contract, the function depositValidator is designed to facilitate the
addition of validators fromthe nodeOperators count, which subsequentlyinfluencesthere-
wards allocated to nodeOperators. However, the issue stems from the fact that these re-
wards are not updated before the addition of a new validator. As a consequence, new val-
idators end up sharing rewards allocated to old validators.

- NodeOperator Bob currently has 0 validators under his control.

37

- Bob decides to add 1 new validator to his list Prior to the rewards being distributed
among validators.

- When the rewards are subsequently given out, Bob receives a share of the rewards
that were initially accumulated by other validators who were active before he added

his new validator.

- Bob benefits from rewards he did not contribute to, thereby gaining an unfair advan-
tage over other validators who earned their rewards through actual participation and
contribution.

SHB.12.1: KeysManager.sol

w function depositValidator(bytes memory publicKey) external override {

102 require(msg.sender == core().issuer(), "KeysManager: Only issuer can
— activate");

103

104 Validator storage validator = _validators[publicKey];

105

106 // num of Valudators allowed is specified as type(uint256) .max .
— Hence, using the same here

107 require(

108 type (uint256) .max > nodeOperatorValidatorCount [validator.

— nodeOperator],

109 "KeysManager: validator deposit not added by node operator"

110);

m

12 require(validator.state == State.ACTIVATED, "KeysManager: Key not
— activated");

13 validator.state = State.DEPOSITED;

i // node operator active validator count increases

115 nodeOperatorValidatorCount [validator.nodeOperator] += 1;

16

38

1m IStakingPool (core() .validatorPool()) .claimAndUpdateRewardDebt (
— validator.nodeOperator);
n8

119 emit DepositValidator(publicKey);
120 }

SHB.12.2: StakingPool.sol

n function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

7

7 uint256 userValidators = IKeysManager(core.keysManager()).
— nodeOperatorValidatorCount (usr) ;

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1lel2) -
<~ user.rewardDebt;

80

8l if (pending > 0) {

82 IERC20Upgradeable (address (stkEth)) .safeTransfer(usr, pending);
83 emit RewardRedeemed(pending, usr);

84 }

85

86 user.rewardDebt = (accRewardPerValidator * userValidators) / 1lel2;
87 user.amount = userValidators;

88)

Consider implementing a mechanism to update the rewards before new deposits. This can
be achieved by gathering an array of pending depositors (who called the depositToEth2) and
stating them as DEPOSITED after updating the rewards in the Oracle contract.

Theteamacknowledgedtheissue, stating that they willbe implementing the fix by using the
oracle to make the validator eligible for rewards.

39

SHB.13 Incorrect Condition Prevents Governor from Updating

Commission Fees

- Severity: [HIGH - Likelihood: 2

- Status: Fixed « Impact:3

The updateCommissions function is designed to allow the Governor to update commission
fees. However, there’'s an oversight in the condition that checks the validity of the provided
commission values. The condition reverts if both _pStakeCommission and _valCommis-
sionarelessthan BASIS_POINT, andtheirsumisalsolessthan BASIS_POINT.Thisincorrect
condition can prevent the Governor from updating the commission fees to valid values.

The Governor attempts to update the commission fees using the updateCommissions func-
tion. Due to the incorrect condition, even if the provided values are valid and within the ac-
ceptable range, the function might revert with the InvalidValues error, preventing the Gov-
ernor from setting the desired commission rates.

SHB.13.1: Oracle.sol

ng function updateCommissions(
19 uint32 _pStakeCommission,
120 uint32 _valCommission

m) external onlyGovernor {

122 if (

123 _pStakeCommission < BASIS_POINT &&

124 _valCommission < BASIS POINT &&

125 (_pStakeCommission + _valCommission) < BASIS POINT

40

126

127

128

129

130

131

132

) 1

revert InvalidValues();

}
pStakeCommission = _pStakeCommission;
valCommission = _valCommission;

emit CommissionsUpdated(_pStakeCommission, _valCommission);

Review and correct the condition in the updateCommissions function to ensure that it ac-

curately checks the validity of the provided commission values.

SHB.13.2: Oracle.sol

ng function updateCommissions(

n9

120

121

122

123

124

125

126

127

128

129

130

131

132

uint32 _pStakeCommission,

uint32 _valCommission

) external onlyGovernor {

if (

_pStakeCommission >= BASIS POINT

_valCommission >= BASIS POINT

(_pStakeCommission + _valCommission) >= BASIS_POINT
) o

revert InvalidValues();

}
pStakeCommission = _pStakeCommission;
valCommission = _valCommission;

emit CommissionsUpdated(_pStakeCommission, _valCommission);

The team resolved the issue by correcting the commission checks.

SHB.13.3: Oracle.sol

41

ns function updateCommissions(
4 uint32 _pStakeCommission,
15 uint32 valCommission

me) external onlyGovernor {

o if (

18 _pStakeCommission > BASIS_POINT

19 _valCommission > BASIS POINT

120 (_pStakeCommission + _valCommission) > BASIS_POINT

121) revert InvalidValues();

122 pStakeCommission = _pStakeCommission;

123 valCommission = valCommission;

124 emit CommissionsUpdated(_pStakeCommission, _valCommission);
s}

SHB.14 First Staker can Grief Others using an Inflation Attack

- Severity: [HIEBIENI - Likelihood: 2

- Status: Fixed - Impact: 2

A malicious actor can front-run a call to the pushData function within Oracle. This call up-
dates the exchange rate and subsequently influences the stkETH price calculation. By ex-
ploiting the issue described in (minimum stake amount bypass), the attacker can stake 1
wei, and mint 1 wei of stkETH, and then proceed to deposit a substantial ETH value in with-
drawalCredential. Which leads to an inflation of the price of stkETH. This inflation impacts
subsequent users’ ability to stake, leading to a cascading effect of artificially inflated token
prices. Users attempting to stake face rounding down issues, intensifying the inflation at-
tack's consequences. it can be even more impacting if the protocol implements an unstak-
ing mechanism.

42

1. Consider a scenario where the protocol has just been deployed and has no stakers
and that oracle members are trying to activate some validators.

2. Malicioususer Bob observesthe mempoolfor pushDatatransactions and anticipates
that a particular vote will satisfy the quorum check.

3. Bob performs a front-running attack by submitting two transactions:

(a) Heexploitstheissue: SHB.25. Minimum Stake Amount Bypass, he will be able to
stake 1weiof Ether and receives 1 wei of stkETH due to the 1:1exchange rate.

(b) Bobthen deposits alarge amount of ETH into withdrawalCredential.

4. The pushData transaction, which was expected to pass the quorum check, succeeds
and updates the exchange rate, leading to a higher stkETH price calculation. The

price calculation incorporates pricePerShare:

SHB.14.1: IssuerUpgradable.sol

pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount()) * 1el8) /
issuer.stkEthMinted();

5. As aresult of the inflated pricePerShare, the price of 1 wei of stkETH becomes very
high due to the large ETH deposit in the WithdrawalCredential contract.

6. Subsequent users attempting to stake will have to do so at the inflated price until the
pushData functionis called again to update the exchange rate.

7. Userstryingto stake less than the balance of WithdrawalCredential contract will re-
ceive no shares due to stkEthToMint rounding down to zero, exacerbating the impact
of the inflation attack.

43

SHB.14.2: IssuerUpgradable.sol

164

165

166

167

168

169

170

m

172

173

174

175

176

177

178

function mintL2(

uint256 _messengerld,
uint256 _callValue,
address _receiverAddress,

bytes memory _payload

external

payable

whenNotPaused
minimumStakeAmount (msg.value)

onlyExistingMessenger (_messengerId)

uint256 ethToStake = msg.value - _callValue;
emit Stake(msg.sender, ethToStake, block.timestamp);
uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().

< pricePerShare();

SHB.14.3: Oracle.sol

w2 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183

184

185

186

187

188

189

190

191

192

193

194

if (calculatedRewards > 0) {
uint256 valEthShare = (valCommission * uint256(calculatedRewards)
—) / BASIS POINT;
uint256 protocolEthShare = (pStakeCommission * uint256(
— calculatedRewards)) /
BASIS_POINT;
IIssuer issuer = IIssuer(core().issuer());
pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount () -
valEthShare -
protocolEthShare) * 1e18) /
issuer.stkEthMinted() ;

44

195 withdrawals.distributeRewards(protocolEthShare, valEthShare,

— pricePerShare);

19 emit RewardRateChanged (pricePerShare) ;

197 } else if (calculatedRewards < 0) {

198 IIssuer issuer = IIssuer(core().issuer());
199 pricePerShare =

200 ((withdrawals.getTotalRewards() +

201 issuer.ethStaked() -

202 withdrawals.getTotalSlashedAmount()) * 1el8) /
203 issuer.stkEthMinted();

204 emit RewardRateChanged (pricePerShare) ;

205 }

06}

Itisrecommendedto correctthe minimum stake check to remediate the risk of the inflation

attack.

Theteamresolvedtheissue by applyingthe minimumStakeAmount check onthe msg.value

- _callValue instead of msg.value.

SHB.14.4: IssuerUpgradable.sol

s function mintL2(

169 uint256 _messengerld,

170 uint256 _callValue,

m address _receiverAddress,

172 bytes memory _payload

ms)

174 external

175 payable

176 whenNotPaused

7 minimumStakeAmount (msg.value - _callValue)

45

178 onlyExistingMessenger (_messengerId)

179 {

SHB.15 Innacurate rewardDebt Calculation for

nodeOperators Modifying Validator Count

- Severity: [HIEBIEN - Likelihood: 2

- Status: Fixed « Impact: 2

Withinthe StakingPool contract, the function claimAndUpdateRewardDebt allows nodeOp-
eratorsto claimtheir rewards based on the number of validators under their management.
However, a discrepancy in the calculation of user.rewardDebt leads to inconsistent out-
comes for nodeOperators when they add or remove validators from their control.

Scenario A: Inaccurate Reward Debt Upon Adding Validators

1. Inascenarioinvolving 20 validators and a total of 10000 wei in validator rewards, the
ideal distribution dictates that each validator should receive 500 wei as their propor-
tionate share of the rewards.

2. Node Operator Bob, responsible for managing 2 validators, makes the decision to in-
troduce a 3rd validator under his supervision.

3. Upon Bob’s invocation of the claimAndUpdateRewardDebt function, he receives
rewards meant for the total number of user.amount validators, which amounts to 2.
Consequently, he gains rewards equivalent to 1000 wei (500 wei per validator * 2
validators).

46

4. However, the variable user.rewardDebt, intended to represent the amount Bob has

received, is inaccurately calculated using the formula (accRewardPerValidator *
userValidators) /1e12. In this case, it is set to 1500 wei (500 wei * 3 validators).

. Consequently, the protocol erroneously assumes that Bob has obtained 1500 wei,

when in reality, he has only received 1000 wei. This miscalculation leads to Bob
receiving fewer rewards than he should during the subsequent invocation of
claimAndUpdateRewardDebt.

Scenario B:Incorrect Reward Debt After Exiting a Validator

1.

In a scenario with 20 validators and 10000 wei in validator rewards, each validator
should receive 500 wei as their share of the rewards.

Node Operator Bob, managing 2 validators, Bob decides to exit 1 validator, reducing
his validator countto 1.

Upon Bob’s invocation of the claimAndUpdateRewardDebt function, he receives
rewards meant for the total number of user.amount validators, which amounts to 2.
Consequently, he gains rewards equivalent to 1000 wei (500 wei per validator * 2
validators).

However, the variable user.rewardDebt, intended to represent the amount Bob has
received, is inaccurately calculated using the formula (accRewardPerValidator *
userValidators) /1e12. In this case, it is set to 500 wei (500 wei * 1 validators).

Consequently, the protocol erroneously assumes that Bob has obtained 500 wei,
when in reality, he has received 1000 wei. This miscalculation leads to Bob receiving
more rewards than he should during the subsequent invocation of
claimAndUpdateRewardDebt.

SHB.15.1: StakingPool.sol

n function claimAndUpdateRewardDebt(address usr) external override {

75

76

UserInfo storage user = userInfos[usr];

47

7 uint256 userValidators = IKeysManager (core.keysManager()).
— nodeOperatorValidatorCount (usr) ;

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / lel2) -
<~ user.rewardDebt;

80

8l if (pending > 0) {

82 IERC20Upgradeable (address(stkEth)) .safeTransfer(usr, pending);
83 emit RewardRedeemed(pending, usr);

84 }

85

86 user.rewardDebt = (accRewardPerValidator * userValidators) / 1lel2;
87 user.amount = userValidators;

Consider correcting user.rewardDebt calculation to be : user.rewardDebt = (accReward-
PerValidator * user.amount) /1e12 when user.amount is not zero, and using the current for-

mula of user.rewardDebt = (accRewardPerValidator * userValidators) /1e12 otherwise.

The teamresolved the issue by using user.amount whenit's different from zero.

SHB.15.2: StakingPool.sol

7 function claimAndUpdateRewardDebt(address usr) external override {

75 UserInfo storage user = userInfos[usr];

7

7 uint256 userValidators = IKeysManager (core.keysManager()).
— nodeOperatorValidatorCount (usr) ;

78

79 uint256 pending = ((accRewardPerValidator * user.amount) / 1lel2) -
<~ user .rewardDebt;

80

8l if (pending > 0) {

48

82 IERC20Upgradeable (address(stkEth)) .safeTransfer(usr, pending);

83 emit RewardRedeemed(pending, usr);

84 }

85

8 if (user.amount !'= 0) {

87 user.rewardDebt = (accRewardPerValidator * user.amount) / 1lel2;

88 } else {

89 user.rewardDebt = (accRewardPerValidator * userValidators) / lel2
—

9 }

9 user.amount = userValidators;

2 }

SHB.16 Uninitialized socketRegistry Address Leading to Po-

tential Loss of Funds

- Severity: [HIEBIEN - Likelihood: 1

- Status: Fixed « Impact: 3

The Issuer contract in L2 contains a function transferEthMainnet designed to transfer ETH
from Layer 2 (L2) to Layer 1(L1). However, there's a critical oversight related to the socke-
tRegistry address. This address is not initialized in the contract’s constructor. If the owner
does not set this address post-deployment, any attempt to transfer ETH using the transfer-
EthMainnet function can resultin a loss of funds, as the funds would be sent to an uninitial-
ized address.

SHB.16.1: Issuer.sol

49

s function transferEthMainnet(

19 uint256 _stkEthMinted,
120 uint256 _amount,

121 uint256 _slippageFee,
122 bytes calldata _payload

23) external override onlyOracle returns (bool) {
124 if (address(this).balance < _amount + _slippageFee) revert

< InSufficientBalance();

125 // update correct amount

126 newEthStaked = newEthStaked - _amount;

127 newStkEthMinted = newStkEthMinted - stkEthMinted;

128 slippageColleted -= _slippageFee;

129 (bool success,) = socketRegistry.call{ value: _amount +

— _slippageFee }(_payload);

130 if (!success) revert BridgeCallFailed();

131 emit EthBridgedToL1l(address(this) .balance);
132 return success;

B}

Ensure that the socketRegistry address is initialized during the contract deployment,
preferablyin the constructor.

The teamresolved theissue by initializing the socketRegistry address in the initialize func-
tion.

SHB.16.2: Issuer.sol

&9 function initialize(IStkEth _stketh, address _socketRegistry) public

< initializer {

70 __Ownable_init();
| stketh = stketh;
72 socketRegistry = _socketRegistry;

50

73 }

SHB.17 LackofBlacklistMechanismforMalicious Node Oper-

ators

- Severity: _ - Likelihood: 1

- Status: Acknowledged - Impact: 3

The current contract implementation addresses the scenario where a validator acts mali-
ciously and subsequently gets slashed. However, post-slashing, there’s nothingin place to
prevent the same node operator from creating a new validator, calling the depositToEth2
function, and potentially repeating the malicious actions. This oversight can allow mali-
cious actors to continually exploit and grieve the protocol.

A validator acts maliciously, leading to them being slashed. Post-slashing, the validator,
leveragingthe lack of preventive measuresinthe contract, callsthe depositToEth2 function
to create a new validator. They can then repeat their malicious actions, causing repeated
harm to the protocol and its participants.

SHB.17.1: IssuerUpgradable.sol

220 function depositToEth2(bytes calldata publicKey) external whenNotPaused

— {
281 require(
282 address(this) .balance >= VALIDATOR_DEPOSIT + VERIFICATION DEPOSIT

—

91

283

284

285

286

287

288

289

290

29

292

293

294

295

296

297

298

299

300

"Issuer: Not enough ether deposited"

¥

IKeysManager.Validator memory validator = IKeysManager(core.
— keysManager()) .validators(
publicKey

¥

withdrawalverificationDeposit(validator.nodeOperator) ;

IKeysManager (core.keysManager ()) .depositValidator (publicKey) ;

depositedValidators = depositedValidators + 1;

DEPOSIT_CONTRACT.deposit{ value: VALIDATOR_DEPOSIT }(
publicKey,
abi.encodePacked(core.withdrawalCredential()),
validator.signature,

validator.deposit_root

Track and monitor validators that get slashed due to malicious actions, and implement a

blacklist mechanism within the contract.

The team acknowledged the issue, stating that they will be implementing a blacklist mech-

anism with the withdrawal feature.

92

SHB.18 Owner Can Set Critical Valuesto Zero

- Severity: [HIEDIEN - Likelihood: 1

- Status: Fixed « Impact: 3

The setValues function allows the owner to set the values of mevRewards and exitBalance
to zero. While the comment suggests that this function is meant for initialization, it's redun-
dant since uint variables in Solidity are initialized to zero by default. Moreover, allowing the

owner toreset these values post-initialization can lead to unintended consequences.

SHB.18.1: WithdrawalCredential.sol

s« /// @notice this function will be used to initialize mev rewards and

— exit balance

ss function setValues() external onlyOwner {

86 mevRewards = O;
87 exitBalance = 0;
88 }

Consider removing the setValues function as it does not add the intended functionality.

The team resolved the issue by removing the setValues function.

33

SHB.19 OracleMembers CanVote on Multiple ConsensusData

Inputs

- Severity: [IEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The pushData function is designed to allow oracle members to vote on a specific Consen-
susData. While the function restricts an oracle member from voting more than once on a
specific ConsensusData, it doesn’t prevent them from voting on multiple and different Con-
sensusData inputs within the same tx epoch. This oversight can allow a malicious oracle to
produce multiple attestations in the same epoch, undermining the consensus logic.

A malicious oracle member, aiming to disrupt the consensus mechanism, submits votes on
multiple different ConsensusData inputs within the same epoch. This behavior can lead to
confusion, potential desynchronization, and could compromise the integrity of the consen-
sus mechanism.

SHB.19.1: Oracle.sol

21 function pushData(
252 ConsensusData memory _consensusData

253) external override whenNotPaused onlyOracle {

254 if (beaconData.getNextTxEpoch(lastCompletedEpoch) != beaconData.
— getCurrentEpoch()) {

255 revert VotedEarly();

256 }

94

257 bytes32 candidateld = keccak256(abi.encode(_consensusData,

— beaconData.getCurrentEpoch()));

258 bytes32 voteld = keccak256(abi.encode(msg.sender, candidateld));
259 if (submittedVotes[votelId]) {

260 revert AlreadyVoted(msg.sender);

21 }

262 submittedVotes[voteId] = true;

263 uint256 candidateNewVotes = candidates[candidateId] + 1;

264 candidates[candidateId] = candidateNewVotes;

265 if (candidateNewVotes >= quorum) {

Adapt the pushData function to ensure that an oracle member can only vote once per tx
epoch, regardless of the ConsensusData input.

The team acknowledged the issue, stating that they are planning to implement the recom-
mendation with the withdrawal feature.

SHB.20 Need for Whitelisting Trusted Relayers in MEV Boost

- Severity: [HIEBIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

Inthe context of MEV Boost, Relays play a crucial role as a data-availability layer and com-
munication bridge betweenbuilders andvalidators. They are doubly-trusted: builderstrust
them for unbiased payload routing, while proposers trust them for block validity, accuracy,
and data availability. Given their specialization in Denial of Service (DoS) protection and

95

networking, it's essential to ensure that only trustworthy relayers are allowed to partici-
pate. Without a mechanism to whitelist trusted relayers, the system is exposed to potential
risks, especially since there’s an inherent trust assumption on relayers in PBS before the
integration of in-protocol PBS in Ethereum.

Implement a mechanism to whitelist a set of trusted relayers within the MEV Boost system.

The team acknowledged the issue, stating that they are planning to implement the recom-
mendation with the withdrawal feature.

SHB.21 Requirement for Node Operatorsto Set Fee Recipient

to Protocol-Managed Address

- Severity: _ - Likelihood: 1

- Status: Acknowledged - Impact: 3

For the pStake system, Node Operators who run validators should be mandated to set the
fee recipient for their respective validators to an address that is managed by the protocol.
This address is specifically for managing Execution Layer Rewards. It's important to note
that this address is distinct from the Withdrawal Credentials in the consensus layer.

If Node Operators set the fee recipientto an address other than the protocol-managed one,
the Execution Layer Rewards will not be fairly ditributed between the stakers, the protocol
and the validators. This leads to a loss of rewards.

56

Implement a mechanism within the pStake system to enforce Node Operators to setthe fee
recipient to a protocol-managed address. This can be achieved by monitoring the node op-
erators to make sure the fee recipient address is set to the correct address.

The team acknowledged the issue, stating that they are planning to implement the recom-
mendation with the withdrawal feature.

SHB.22 Missing Socket APl Payload Check

- Severity: [HIEDIEN - Likelihood: 1

- Status: Acknowledged - Impact:3

The protocol currently employs the socket bridge to facilitate the transfer of ether from L2
toL1. Giventhe potentialrisks associated withacompromisein Socket APl servers,it'scru-
cial to have an additional layer of validation for the payload data. Implementing the Socket
V2 Verifier can serve as this additional validation layer, ensuring the integrity and authen-
ticity of the data being transferred.

If the Socket API servers are compromised, malicious actors could manipulate or inject
malicious payload data during the transfer from L2 to L1. This could lead to incorrect or
fraudulent transfers, potentially causing financial losses or undermining the trust in the
protocol.

57

https://github.com/SocketDotTech/socket-v2-verifier-contracts
https://github.com/SocketDotTech/socket-v2-verifier-contracts

SHB.22.1: Issuer.sol

18

n9

120

121

122

123

124

125

126

127

128

129

130

131

132

133

function transferEthMainnet(

uint256 _stkEthMinted,
uint256 _amount,
uint256 _slippageFee,
bytes calldata _payload

) external override onlyOracle returns (bool) {

if (address(this).balance < _amount + _slippageFee) revert
<% InSufficientBalance();

// update correct amount

newEthStaked = newEthStaked - _amount;

newStkEthMinted = newStkEthMinted - _stkEthMinted;

slippageColleted -= _slippageFee;

(bool success,) = socketRegistry.call{ value: _amount +
— _slippageFee }(_payload);

if (!success) revert BridgeCallFailed();

emit EthBridgedToL1l(address(this) .balance);

return success;

Integrate the Socket V2 Verifier into the protocol’s transfer mechanism.

Theteam acknowledgedtheissue, stating thatthe Socket V2 Verifieris not yetin production

mode.

58

https://github.com/SocketDotTech/socket-v2-verifier-contracts
https://github.com/SocketDotTech/socket-v2-verifier-contracts

SHB.23 WITHDRAWAL_CREDENTIAL_BYTES32 Setter Desyn-

chronizes Old Validators

- Severity: [HIEDIEN - Likelihood: 1

- Status: Acknowledged - Impact: 3

The smart contract Core features avariable named WITHDRAWAL_CREDENTIAL_BYTES32,
which stores the withdrawal address for rewards and full withdrawals. This withdrawal
address, once set in the protocol, remains immutable and cannot be changed. As a result,
validators who have registered with a specific withdrawal address are unable to modify it
after registration. The only way to alter this address is through the intervention of the gov-
ernor, who can call the setWithdrawalCredential function. However, even if the withdrawal
addressis changed by the governor, previously registered validators will continue to retain
the initially assigned withdrawal address, which will cause a desynchronization between
validators.

SHB.23.1: Core.sol

ss. function setWithdrawalCredential (bytes32 withdrawcreds) external

— onlyGovernor {
55 //0x0100000000000000000000003d80b31a78c30£fc628£20b2c89d7ddbf6e53cedc
s0o WITHDRAWAL_CREDENTIAL_BYTES32 = withdrawcreds;

Consider setting the WITHDRAWAL_CREDENTIAL_BYTES32 only once, as the protocol
should rely on upgradeability to modify the WithdrawalCredential’s code.

59

The team acknowledged the issue, stating that the Core contract is already deployed and it
is not upgradeable.

SHB.24 GovernorHas Full Control Over Oracle Quorum

- Severity: - - Likelihood: 1

- Status: Acknowledged - Impact: 2

There exists a function within the contract that permits the governor to modify the quo-
rum, which is the number of required votes needed by oracle members to validate the data.
This capability grants the governor undue influence and control over the oracle, potentially
compromising its decentralized nature and integrity.

SHB.24.1: Oracle.sol

m function updateQuorum(uint32 latestQuorum) external onlyGovernor
— NonZeroQuorum(latestQuorum) {
m emit QuorumUpdated(latestQuorum, quorum);

n2 quorum = latestQuorum;

Consider implementing a decentralized governance that should be responsible for critical
changes like adjusting the quorum. Also, itis recommended to limit the governor’s ability to
change the quorum or introduce a range within which the quorum can be adjusted to pre-
vent extreme values.

60

The team acknowledged the issue, stating that they are planning to implement proper gov-
ernance with DAO but will start by a multisig with time-lock to update any admin, governor
functionalities.

SHB.25 Minimum Stake Amount Bypass

- Severity: JEOW] - Likelihood: 2

. Status: Fixed - Impact:1

The function mintL2 within the Issuer L1 contract is designed to facilitate the minting of
stkETH tokens in Layer 2 (e.g., Arbitrum or Optimism). This function includes a check to
ensure that the amount of ETH supplied in msg.value is greater than or equal to the
minimum stake amount. However, the actual amount of stkETH minted to the user is
determined by the variable ethToStake, which is derived from msg.value - _callValue. This
discrepancy enables users to exploit the protocol by minting arbitrarily low amounts of
stkETH through manipulation of the _callValue, bypassing the intended minimum stake
requirement. This exploitation contradicts the security assumption mentioned in the
minimumStakeAmount modifier comment. It's important to note that this issue is
particularly applicable in Arbitrum , where the remainder of _callValue is reimbursed to
the user. This reimbursement mechanism effectively allows users to mint stkETH with

minimal monetary commitment.

1. Assuming an initial exchange rate of 1:1between stkETH and ETH.

2. The mintL2 function includes a check to ensure that msg.value (the amount of ETH
supplied) is greater than or equal to the minimum stake amount.

61

3. However, theactualamount of stkETH mintedis determined by ethToStake, calculated

as msg.value - _callValue.

4. Exploiting this discrepancy, a user (e.g., Bob) can manipulate _callValue to make eth-
ToStake an arbitrarily low value.
5. Bob calls mintL2 with the following parameters:
msg.value =10000 gwei
_callvalue =10000 gwei - Twei
messengerld of the ArbitrumMessenger contract
Therefore:
ethToStake = msg.value - _callValue =1wei
6. Bob successfully mints an amount of stkETH equivalent to 1 wei, which significantly

deviates from the intended minimum stake requirement, and gets refunded back
_callValue - arbitrum Fees.

7. This enables Bob to bypass the minimum stake constraint, violating the security as-
sumption.

SHB.25.1: IssuerUpgradable.sol

e function mintL2(

165 uint256 _messengerld,

166 uint256 _callValue,

167 address _receiverAddress,

168 bytes memory _payload

169)

170 external

m payable

172 whenNotPaused

173 minimumStakeAmount (msg.value)
174 onlyExistingMessenger (_messengerId)
ms o

62

176 uint256 ethToStake = msg.value - _callValue;
17 emit Stake(msg.sender, ethToStake, block.timestamp);
178 uint256 stkEthToMint = (ethToStake * 1e18) / core.stkEth().

— pricePerShare();

Consider performingthe minimumStakeAmount checkon ethToStake instead of msg.value.

Theteamresolved theissue byapplying the minimumStakeAmount checkonthe msg.value

- _callValue instead of msg.value.

SHB.25.2: IssuerUpgradable.sol

s function mintL2(

169 uint256 _messengerld,

170 uint256 callValue,

7 address _receiverAddress,

172 bytes memory _payload

m)

174 external

175 payable

176 whenNotPaused

i minimumStakeAmount (msg.value - _callValue)
178 onlyExistingMessenger (_messengerId)
m |

63

SHB.26 Inability to Update stkETH Exchange Rate When All

Rewards Are Slashed

- Severity: [EOW| - Likelihood: 1

. Status: Fixed - Impact: 2

Within the Oracle contract, the function pushData is essential for communicating key
information from the consensus layer to the protocol. This information includes details
about exited validators and the amounts that have been slashed. The variable
deltaBalanceChange is responsible for representing rewards earned by validators, and
the subsequent call to the changeCValue function facilitates the modification of the
exchange rate for stkETH. However, an issue arises when the deltaBalanceChange is
equalto the slashed_amount. In this situation, the exchange rate remains unchanged even
if stakers have staked ETH in the tx epoch, which contradicts the intended behavior of the
protocol.

SHB.26.1: Oracle.sol

27 withdrawals.setRewardsSlashedAmount (

298 deltaBalanceChange,

299 _consensusData.slashedAmount,
300 exitBalance

01) ;

32 changeCValue(int256(deltaBalanceChange) - int256(slashed_amount)) ;

SHB.26.2: Oracle.sol

w2 function changeCValue(int256 calculatedRewards) internal whenNotPaused {

183 if (calculatedRewards > 0) {

64

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

uint256 valEthShare = (valCommission * uint256(calculatedRewards)
<) / BASIS_POINT;
uint256 protocolEthShare = (pStakeCommission * uint256(
— calculatedRewards)) /
BASIS_POINT;
IIssuer issuer = IIssuer(core().issuer());
pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount () -
valEthShare -
protocolEthShare) * 1e18) /
issuer.stkEthMinted();
withdrawals.distributeRewards(protocolEthShare, valEthShare,
— pricePerShare);

emit RewardRateChanged (pricePerShare) ;

} else if (calculatedRewards < 0) {

IIssuer issuer = IIssuer(core().issuer());
pricePerShare =
((withdrawals.getTotalRewards() +
issuer.ethStaked() -
withdrawals.getTotalSlashedAmount()) * 1el8) /
issuer.stkEthMinted () ;
emit RewardRateChanged (pricePerShare) ;

Considerincluding the case where calculatedRewards is equal to zero in the else if block:

SHB.26.3: Oracle.sol

} else if (calculatedRewards <= 0) {

IIssuer issuer = IIssuer(core().issuer());
pricePerShare =

((withdrawals.getTotalRewards() +

65

issuer.ethStaked() -
withdrawals.getTotalSlashedAmount()) * 1el8) /
issuer.stkEthMinted () ;
emit RewardRateChanged (pricePerShare) ;

Theteamresolvedtheissue byincludingthe case where calculatedRewardsis equaltozero
inthe else if block:

SHB.26.4: Oracle.sol

v r else if (calculatedRewards <= 0) {

191 IIssuer issuer = IIssuer(core().issuer());
192 pricePerShare =
193 ((withdrawals.getTotalRewards() +
194 issuer.ethStaked() -
195 withdrawals.getTotalSlashedAmount()) * 1el18) /
19 issuer.stkEthMinted();
197 emit RewardRateChanged (pricePerShare) ;
w8}
SHB.27 Uninitialized optimismReceiver and

arbitrumReceiver Can Lead to DoS

- Severity: - - Likelihood: 1

- Status: Fixed « Impact: 2

The optimismReceiver and arbitrumReceiver variables, crucial for cross-chain function-
ality, are not initialized in the contract’'s constructor. This oversight can lead to a Denial of

66

Service (DoS) attack on the cross-chain functionality untilthese variables are properly ini-
tialized at a later stage.

SHB.27.1: OptimismMessenger.sol

5 address private optimismReceiver;

SHB.27.2: ArbitrumMessenger.sol

3 address private arbitrumReceiver;

Ensure that all critical variables are properly initialized in the contract’s constructor.

The team resolved the issue by initializing optimismReceiver and arbitrumReceiver in the
contract’s constructor.
SHB.27.3: OptimismMessenger.sol

26 constructor (address _messenger, address _core, address _optimismReceiver

<) LiMessengerBase(_core) {

2 optimismMessenger = ICrossDomainMessenger (_messenger) ;
28 optimismReceiver = _optimismReceiver;
29 }

SHB.27.4: ArbitrumMessenger.sol

s constructor(address _inbox, address _core, address _arbitrumReceiver)

— L1MessengerBase(_core) {

2 inbox = IInbox(_inbox);
27 arbitrumReceiver = arbitrumReceiver;
28 }

67

SHB.28 Hard-coded Slippage Causes DoS

- Severity: [EOW - Likelihood: 1

. Status: Acknowledged - Impact:1

Thelssuer L1contract contains the function getDepositL2, which serves as amechanismto
receive ETHfrom Layer 2 stakers. Thisfunctionis designedtoimplementaslippage control,
intended to account for potential delays in the bridge process. However, a significant issue
arises from the fact that the slippage control is hard-coded to a fixed value of 1%. This in-
flexible slippage setting can lead to complications, especially during periods of significant
delayinthe bridge process. In such cases, the contract may become incapable of receiving
ETH from Layer 2 stakers, hinderingits intended functionality.

SHB.28.1: IssuerUpgradable.sol

20 function getDepositL2(

262 uint256 _stkEthMinted,

263 uint256 _sourceChainld

24) external payable onlySocketReceiver {

265 // accept 1%, error in exchange rate due to delay in bridging
266 uint256 exchangeRate = core.stkEth().pricePerShare();

27 if (

268 exchangeRate - exchangeRate / 100 > (msg.value /

< _stkEthMinted)

269 (msg.value / _stkEthMinted) > exchangeRate + exchangeRate /
— 100
270) revert InvalidExchangeRateReceived();

68

Consider implementing a flexible slippage control to allow the contract to adapt to various
bridging delays.

The team acknowledged the issue, stating that the accepted error rate is kept at max 1%
so that the exchange rate does not get changed by a lot and the funds will be transferred
once a day by the oracle (protocol) itself which will make sure to provide enough slippage
by addSlippage functionality if required.

SHB.29 Block Number Difference Between Chains results in

Desynchronized Events

- Severity: INFORMATIONAL - Likelihood:1
- Status: Acknowledged - Impact: 0
The contracts L2MessageContract.sol, L2MessageContractOptimism.sol, and

L2MessageContractArbitrum.sol contain the function changeCValue, which is responsible
for minting sktETH for users on Layer 2 after receiving a message from the
crossDomainAccount. This function emits an event cValueChanged(block.number,
_cValue) to indicate the block number at which the cValue changed. However, a crucial
issue arises due to the potential disparity between block.number on Layer 2 (Arbitrum or
Optimism) and block.number on Layer 1. This mismatch can lead to the emission of an
inaccurate block number in the event, causing confusion and potentially impacting
front-end applications relying on accurate event information.

69

SHB.29.1: L2MessageContract.sol

w function changeCValue(uint256 _cValue) external

— onlyFromCrossDomainAccount (msg.sender) {

a CValue = _cValue;
42 emit cValueChanged(block.number, _cValue);
43 }

SHB.29.2: L2MessageContractOptimism.sol

53 function changeCValue(
54 uint256 cValue

55) external override onlyFromCrossDomainAccount whenNotPaused {

56 stkETH.changePricePerShare(_cValue) ;
57 emit cValueChanged(block.number, _cValue);
58 }

SHB.29.3: L2MessageContractArbitrum.sol

s function changeCValue(
44 uint256 cValue

s) external override onlyFromCrossDomainAccount whenNotPaused {

46 StkETH. changePricePerShare(_cValue);
47 emit cValueChanged(block.number, _cValue);
48 }

Consider relying on block.timestamp instead to have a more accurate way to track event
timing.

The team acknowledged the issue, stating that their Ul is fetching data from subgraphs and
not directly from the contracts. Also they have integrated different subgraphs for L1and
L2s.

70

4 Best Practices

BP.1 Remove Unusedvariables

The contracts contain multiple variables that are not utilized in their operations. These un-
used variables can introduce unnecessary complexity, increase gas costs, and potentially
lead to confusion or misinterpretations when reviewing or interacting with the contracts. It
isrecommended to remove those variables.

BP.1.1: StakingPool.sol

2 IERC20Upgradeable public pstake;
13 IUniswapRouter public router;

3 address public WETH;

BP.1.2: StakingPool.sol

22 IPriceOracle public oracle;

BP.1.3: StakingPool.sol

4 uint256 public DEVIATION;
& uint256 public constant BASIS POINT = 10000;

BP.1.4: WithdrawalCredential.sol

28 uint256 private newSlashedAmount;

BP.1.5: KeysManager.sol

n uint256 public constant PUBKEY_ LENGTH = 48;
8 uint256 public constant SIGNATURE_LENGTH = 96;
v uint256 public constant VALIDATOR_DEPOSIT = 31el8;

71

BP.2 Remove Redundant Initializations with
Default Type Values

The contract contains variables that are explicitly initialized with their default type values.
In Solidity, variables are automatically initialized with their default values (e.g., 0 for inte-

gers, false for booleans). Remove these redundant initializations to simplify the contract
and reduce deployment costs.

BP.2.1: Oracle.sol

73 uint256 slashed_amount = O;

BP.2.2: Oracle.sol

286 uint256 exitBalance = O;

BP.2.3: Oracle.sol

sz uint256 exitValidatorBalance = O;

BP.3 Remove Tautological Statements

The contract contains tautological statements, which are always true by their nature.
Specifically, the require statement checks if type(uint256).max is greater than a value
from nodeOperatorValidatorCount, which will always be true since type(uint256).max

represents the maximum possible value for an uint256 and nodeOperatorValidatorCount
will not reachit since it only grows increments.

12

BP.3.1: KeysManager.sol
w7 require(

108 type (uint256) .max > nodeOperatorValidatorCount [validator.

— nodeOperator],

109 "KeysManager: validator deposit not added by node operator"

mw o);

BP.4 Unchanged Variables Should Be Declared as
Constants

The contract contains variables that remain unchanged throughoutits lifecycle. These vari-
ables, whichdo notundergo any modifications post-deployment, shouldideally be declared

as constants. Using constants instead of regular state variables can lead to gas savings.

BP.4.1: Oracle.sol

322 uint256 public minExitBal = 16 ether;

BP.4.2: Oracle.sol

3% uint256 public maxSlashing = 1 ether;

73

BP.5 Correct Misleading Comments

In the Core contract, the comments above setWithdrawalCredential state that the
withdrawal address is in BLS form when itis not, it's an execution key (0x01).

BP.5.1: Core.sol

57 /// Q@param withdrawcreds: it is the withdrawal address in BLS form

ss function setWithdrawalCredential(bytes32 withdrawcreds) external

— onlyGovernor {

59 //0x0100000000000000000000003d80b31a78c30fc628£20b2c89d7ddbf6eb3cedc

BP.6 Optimize For Loop Counter Increment

In multiple contracts, the logic necessitates looping over a number of elements. A way to

optimize incrementing the counter is using the unchecked keyword and to use
post-increment. Here is an example:

BP.6.1: Example

for (uint256 i; i < len;) {
unchecked{
++1;

3

14

BP.7 Remove Unused Modifier

The CoreRef contract defines a modifier named ifMinterSelf. However, throughout the con-
tract’'simplementation, this modifier is not utilized in any of the functions or methods.

BP.7.1: CoreRef.sol

1 modifier ifMinterSelf() {

2 if (_core.isMinter(address(this))) {
2 _

22 }

2}

75

5

5.1

N N N N N

SN

\

D NN N N N

v

Tests

L1-contracts

all contracts deploys successfully (146ms)
upgradable contracts get upgraded by admin (280ms)
only admin able to set values in core contract (593ms)
only admin able to add values to oracle (178ms)

only admin able to set |2 messaging address (63ms)

only node operator can add validator (337ms)

cannot add same validator again (84ms)

user should not stake less that 0 (161ms)

user should be able to stake and get stkETH (101ms)

user should be able to stake WETH and get stkETH (1973ms)
user should be able to get stkETH on optimism (5601ms)

user should be able to get stkETH on optimism by staking WETH
(1999ms)

user should be able to transfer stkETH on Optimism (2082ms)

16

SN NEREN

R N N N N N N

d

user should be able to get stkETH on Arbitrum (5240ms)
usershouldbe abletoget stkETH on Arbitrum by stakingWETH (868ms)
user should be able to transfer stkETH on Arbitrum (2599ms)

should not make deposit for validator when less than 32 eth in pool
(72ms)

should only make deposit for validator when key is activated (390ms)

fetch beacon data

push data for validator activation (277ms)

No exit validators and no slashing (405ms)

should update c value on Optimism and Arbitrum (3230ms)
no slashing and wrong validator exiting (112ms)

only slahing less than 1eth accepted (92ms)

delta balance more than minimum exit balance (159ms)
exit validator with no slahing (338ms)

slashing less than rewards (393ms)

slashing more than rewards (212ms)

28 passing

testFuzz_stake(uint96) (runs: 256, u: 153567, : 153567)

17

SN NEREN

testFuzz_stakeOnArbitrum(uint96) (runs: 256, u: 219633, : 219633)
testFuzz_stakeOnOptimism(uint96) (runs: 256, u: 654328, : 654328)
testFuzz_transferToArbitrum(uint96) (runs: 256, u: 696284, : 696284)

testFuzz_transferToOptimism(uint96) (runs: 256, u: 677649, : 677649)

9 passing

5.2 L2-contracts

contracts deploy successfully (143ms)

only admin able to add minter,burner and lIMessgae addresses
(544ms)

only minter able to min (141ms)

only 12 message contract can change price per share (107ms)

v user stake to get stkEth (606ms)

transfer Eth to mainnet successfully using socket (1885ms)

The project offers a testing mechanism to improve the correctness of smart contracts;
nonetheless, the number of tested scenarios are low; therefore, we advise on resolving
this issue by covering more scenarios to handle most of the edge cases, in order to
guarantee the integrity of the code and the functionality of the protocol.

18

6 Conclusion

In this audit, we examined the design and implementation of pStake Finance contract and
discoveredseveralissues of varying severity. Persistenceteamaddressedl4issuesraised
in the initial report and implemented the necessary fixes, while classifying the rest as a
risk with low-probability of occurrence. Shellboxes” auditors advised Persistence Team to
maintain a high level of vigilance and to keep those findings in mind in order to avoid any
future complications.

79

7 ScopecFiles

7.1 Audit

Files

MD5 Hash

L1-contracts/contracts/Core.sol

480942fe2f929c558ef4f42e6687f89b

L1-contracts/contracts/CoreRef.sol

cadd70f244774cd8173431a7398ecf7a

L1-contracts/contracts/IssuerUpgradable.sol

58f048e2bec0al778887efa672253375

L1-contracts/contracts/KeysManager.sol

6f89a5be319402db1f50c9cle90d8ecO

L1-contracts/contracts/Oracle.sol

b0707b809d0790f1c331f3f41c532341

L1-contracts/contracts/Permissions.sol

b625e55%9ec2e81856577dd5f1806%ab5

L1-contracts/contracts/PriceOracle.sol

a20cd44a8b1287fc3a1b82beb6f67e285

L1-contracts/contracts/StakingPool.sol

2e6eb81c4814cf53df2b5a71fe3eb4ee

L1-contracts/contracts/TimeLockController.sol

035e8800904d1f7554276ef4ffddda39

L1-contracts/contracts/WithdrawalCredential.s
(o]

8cd0002e96af2b70b828841ab27ff14f

L1-contracts/contracts/token/StkEth.sol

a04a19e80f887f4caelcc05b0e313d60

L1-contracts/contracts/messenger/ArbitrumM
essenger.sol

324b65b7ac4846bb65eal73al1315ack4

L1-contracts/contracts/messenger/L1Messeng
erBase.sol

2cl4cbbec58b2f05d5d35b5ee716906e

L1-contracts/contracts/messenger/OptimismM
essenger.sol

356c30f6bbb996412ac7873483079b9b

L1-contracts/contracts/library/BeaconData.sol

66539115a3844afc29324b8c%acflede

80

L2-contracts/contracts/Issuer.sol

7e50ff6318f1035d13820b3ed2a90736

L2-contracts/StkEth.sol

361aebald670f5332f8d32842bb3fedd

L2-contracts/TimeLockController.sol

035e8800904d1f7554276ef4ffddda39

L2-contracts/optimism/L2MessageContractOpti
mism.sol

bf2211deb2cfee133854e90e%a4aTfc2

L2-contracts/arbitrum/L2MessageContractArbi
trum.sol

e5lde3b85e54e15a20a4b72ae1d84dd3

7.2 Re-Audit

Files

MD5 Hash

L1-contracts/contracts/Core.sol

480942fe2f929c558ef4f42e6687f89b

L1-contracts/contracts/CoreRef.sol

cabd70f244774cd8173431a7398ecf7a

L1-contracts/contracts/IssuerUpgradable.sol

7094b28e372e01e4f4be515dbé1c1f0d

L1-contracts/contracts/KeysManager.sol

66d277a64dd13a52e4c5a5daba289b20

L1-contracts/contracts/Oracle.sol

9f442cb55de8c93d34acd48ce2787599

L1-contracts/contracts/Permissions.sol

b625e55%9ec2e81856577dd5f1806%ab5

L1-contracts/contracts/PriceOracle.sol

a20cd44a8b1287fc3alb82bebf67e285

L1-contracts/contracts/StakingPool.sol

dé6febbldfcb673f5e06447fb257e7f85

L1-contracts/contracts/TimeLockController.sol

035e8800904d1f7554276ef4ffddda39

L1-contracts/contracts/WithdrawalCredential.s
(o]

cf5e699b004979f53f45d1411eabf19d

L1-contracts/contracts/token/StkEth.sol

a04a19e80f887f4caelcc05b0e313d60

81

L1-contracts/contracts/messenger/ArbitrumM
essenger.sol

bb76b8aasb87beadf2dd4f7ccaz29ddé7

L1-contracts/contracts/messenger/L1Messeng
erBase.sol

2cl4cbbec58b2f05d5d35b5ee716906e

L1-contracts/contracts/messenger/OptimismM
essenger.sol

d4ea22d7c988335442abfe89f9a71eb6

L1-contracts/contracts/library/BeaconData.sol

66539115a3844afc29324b8c%acflede

L2-contracts/contracts/Issuer.sol

ad509754109dd238adab9c9ec89dc44d

L2-contracts/contracts/StkEth.sol

361aebald670f5332f8d32842bb3fedd

L2-contracts/contracts/TimeLockController.sol

035e8800904d1f7554276ef4ffddda39

L2-contracts/contracts/optimism/L2MessageC
ontractOptimism.sol

bf2211deb2cfeel133854e90e9a4a7fc2

L2-contracts/contracts/arbitrum/L2MessageCo
ntractArbitrum.sol

a805d73c20c711e18372f1b08c6d6406

82

8 Disclaimer

Shellboxes reports should not be construed as "endorsements” or "disapprovals” of partic-
ularteamsor projects. These reports do not reflect the economics or value of any "product”
or"asset” produced by any team or project that engages Shellboxes to do a security evalua-
tion, nor should they be regarded as such. Shellboxes Reports do not provide any warranty
or guarantee regarding the absolute bug-free nature of the examined technology, nor do
they provide anyindication of the technology’s proprietors, business model, business or le-
gal compliance. Shellboxes Reports should not be used in any way to decide whether to in-
vestinortake partinacertain project. These reports don't offer any kind of investing advice
and shouldnt be used that way. Shellboxes Reports are the result of a thorough auditing
process designed to assist our clients in improving the quality of their code while lowering
the significant risk posed by blockchain technology. According to Shellboxes, each busi-
ness and person is in charge of their own due diligence and ongoing security. Shellboxes
does not guarantee the security or functionality of the technology we agree to research; in-
stead, our purpose isto assistin limiting the attack vectors and the high degree of variation
associated with using new and evolving technologies.

83

SHELLBOX

For a Contract Audit, contact us at contact@shellboxes.com

=S

84

mailto:contact@shellboxes.com

	Introduction
	About Persistence
	Approach & Methodology
	Risk Methodology

	Findings Overview
	Disclaimer
	Summary
	Key Findings

	Finding Details
	Multiple Candidate Votes Accepted for the Same Epoch
	Replay Attack on Accepted ConsensusData
	Exited Balance of Validators and Staker Rewards Permanently Locked in the WithdrawalCredential Contract
	Permanent Locking of Validator Rewards Due to Lack of depositedValidators Update
	L2 Funds Cannot Be Bridged to L1 Due to Flawed Slippage Calculation
	Stuck MEV Rewards in the WithdrawalCredential
	Desynchronization Risk Due to Epoch-Based Data Submission
	Premature Reward Allocation Due to Ignoring Queue Wait Time
	Loss of User-Supplied Fees when Interacting with Optimism Messenger
	Improper Handling of Exiting Validators Allowing Last-Time Reward Claims
	Desynchronization of pricePerShare Between L1 and L2
	Inequitable Reward Distribution for New Validators
	Incorrect Condition Prevents Governor from Updating Commission Fees
	First Staker can Grief Others using an Inflation Attack
	Innacurate rewardDebt Calculation for nodeOperators Modifying Validator Count
	Uninitialized socketRegistry Address Leading to Potential Loss of Funds
	Lack of Blacklist Mechanism for Malicious Node Operators
	Owner Can Set Critical Values to Zero
	Oracle Members Can Vote on Multiple ConsensusData Inputs
	Need for Whitelisting Trusted Relayers in MEV Boost
	Requirement for Node Operators to Set Fee Recipient to Protocol-Managed Address
	Missing Socket API Payload Check
	WITHDRAWAL_CREDENTIAL_BYTES32 Setter Desynchronizes Old Validators
	Governor Has Full Control Over Oracle Quorum
	Minimum Stake Amount Bypass
	Inability to Update stkETH Exchange Rate When All Rewards Are Slashed
	Uninitialized optimismReceiver and arbitrumReceiver Can Lead to DoS
	Hard-coded Slippage Causes DoS
	Block Number Difference Between Chains results in Desynchronized Events

	Best Practices
	Remove Unused variables
	Remove Redundant Initializations with Default Type Values
	Remove Tautological Statements
	Unchanged Variables Should Be Declared as Constants
	Correct Misleading Comments
	Optimize For Loop Counter Increment
	Remove Unused Modifier

	Tests
	L1-contracts
	L2-contracts

	Conclusion
	Scope Files
	Audit
	Re-Audit

	Disclaimer

